Patents by Inventor John Robbins

John Robbins has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9726891
    Abstract: A display engine assembly comprises a first imager and a second imager to generate a left image and a right image, respectively, in a head-mounted display device. The left and right images are left and right components, respectively, of a single stereoscopic image. The display engine further comprises an optical waveguide optically coupled to the first imager and the second imager. The optical waveguide is part of a first optical path to convey the left image to a left eye of a user of the head-mounted display device and is also part of a second optical path to convey the right image to a right eye of the user of the head-mounted display device.
    Type: Grant
    Filed: September 3, 2015
    Date of Patent: August 8, 2017
    Assignee: Microsoft Technology Licensing, LLC
    Inventors: James Randolph Webster, Jeb Wu, Richard James, Steven John Robbins, Yarn Chee Poon, KengHui Lin, Chienchih Hsiung
  • Patent number: 9717981
    Abstract: Augmented reality and physical game techniques are described. In one or more implementations, an indication is received by a computing device of a location of a physical gaming piece of a game. An augmentation is computed based on the indication by the computing device to be displayed as part of the game. The augmentation is displayed by the computing device on a display device that is at least partially transparent such that a physical portion of the game is viewable through the display device concurrently with the augmentation.
    Type: Grant
    Filed: April 5, 2012
    Date of Patent: August 1, 2017
    Assignee: MICROSOFT TECHNOLOGY LICENSING, LLC
    Inventors: Steven John Robbins, William J. Westerinen, Lisa M. Hanson, Sung Ho Son, Richard J. Wattles
  • Publication number: 20170160547
    Abstract: Introduced here is a display device that comprises a light emitter and a diffractive optical element (DOE) that is optically coupled to receive light from the light emitter and to convey the light along an optical path. The DOE may have an input surface and an output surface parallel to the input surface, where the input surface and the output surface each have a central region and a peripheral region. The DOE further may have optical characteristics such that light exiting the DOE in the peripheral region of the output surface has greater brightness than light exiting the DOE in the central region of the output surface.
    Type: Application
    Filed: December 3, 2015
    Publication date: June 8, 2017
    Inventors: James Randolph Webster, Jeb Wu, Steven John Robbins, Tuomas Heikki Sakari Vallius, Yarn Chee Poon
  • Publication number: 20170140577
    Abstract: Augmented reality light guide display techniques are described. In one or more implementations, an apparatus includes a housing configured in a hand-held form factor, one or more sensors configured to detect a position and orientation of the housing in three dimensions in a physical environment of the housing, a light guide that is at least partially transparent and supported by the housing, a light engine that is optically coupled to the light guide, and one or more modules disposed within the housing and implemented at least partially in hardware. The one or more modules are configured to calculate a position and orientation of an augmentation and cause the light engine to output the augmentation for display using the light guide such that the augmentation is viewable concurrently with at least a portion of the physical environment through the light guide.
    Type: Application
    Filed: January 27, 2017
    Publication date: May 18, 2017
    Applicant: Microsoft Technology Licensing, LLC
    Inventors: William J. Westerinen, Steven John Robbins, Rajeev Badyal, Rod G. Fleck
  • Publication number: 20170131546
    Abstract: An apparatus for use in replicating an image associated with an input-pupil to an output-pupil includes a planar optical waveguide including a bulk-substrate, and also including an input-coupler, an intermediate-component and an output-coupler. The input-coupler couples light corresponding to the image into the bulk-substrate and towards the intermediate-component. The intermediate-component performs horizontal or vertical pupil expansion and directs the light corresponding to the image towards the output-coupler. The output-coupler performs the other one of horizontal or vertical pupil expansion and couples light corresponding to the image, which travels from the input-coupler to the output-coupler, out of the waveguide.
    Type: Application
    Filed: November 10, 2015
    Publication date: May 11, 2017
    Inventors: Scott Woltman, Steven John Robbins, R. Andrew Wall, Tuomas Vallius, Tapani Levola, Pasi Kostamo
  • Publication number: 20170131551
    Abstract: An apparatus for use in replicating an image associated with an input-pupil to an output-pupil includes a planar optical waveguide including a bulk-substrate, and also including an input-coupler, an intermediate-component and an output-coupler. The input-coupler couples light corresponding to the image into the bulk-substrate and towards the intermediate-component. The intermediate-component performs horizontal or vertical pupil expansion and directs the light corresponding to the image towards the output-coupler. The output-coupler performs the other one of horizontal or vertical pupil expansion and couples light corresponding to the image, which travels from the input-coupler to the output-coupler, out of the waveguide. The apparatus further includes a volume layer, embedded between first and second major planar surfaces of the bulk-substrate, configured to cause light that is output by the output-coupler to have a more uniform intensity distribution compared to if the volume layer were absent.
    Type: Application
    Filed: November 10, 2015
    Publication date: May 11, 2017
    Inventors: Steven John Robbins, Scott Woltman, R. Andrew Wall, Yarn Chee Poon
  • Publication number: 20170131545
    Abstract: An apparatus for use in replicating an image associated with an input-pupil to an output-pupil includes a planar optical waveguide including a bulk-substrate, and also including an input-coupler, an intermediate-component and an output-coupler. The input-coupler couples light corresponding to the image into the bulk-substrate and towards the intermediate-component. The intermediate-component performs horizontal or vertical pupil expansion and directs the light corresponding to the image towards the output-coupler. The output-coupler performs the other one of horizontal or vertical pupil expansion and couples light corresponding to the image, which travels from the input-coupler to the output-coupler, out of the waveguide. The apparatus further includes an adjacent planar optical component to provide a more uniform intensity distribution compared to if the adjacent planar optical component were absent.
    Type: Application
    Filed: November 10, 2015
    Publication date: May 11, 2017
    Inventors: R. Andrew Wall, Scott Woltman, Steven John Robbins, Xinye Lou, Gangok Lee, Yarn Chee Poon, Tuomas Vallius, Pasi Kostamo, Tapani Levola, Yijing Fu
  • Patent number: 9639985
    Abstract: A system and method are disclosed for detecting angular displacement of a display element relative to a reference position on a head mounted display device for presenting a mixed reality or virtual reality experience. Once the displacement is detected, it may be corrected for to maintain the proper binocular disparity of virtual images displayed to the left and right display elements of the head mounted display device. In one example, the detection system uses an optical assembly including collimated LEDs and a camera which together are insensitive to linear displacement. Such a system provides a true measure of angular displacement of one or both display elements on the head mounted display device.
    Type: Grant
    Filed: June 24, 2013
    Date of Patent: May 2, 2017
    Assignee: Microsoft Technology Licensing, LLC
    Inventors: Steven John Robbins, Drew Steedly, Nathan Ackerman, Quentin Simon Charles Miller, Andrew C. Goris
  • Publication number: 20170084095
    Abstract: Methods of determining an overall performance of air-conditioning system(s) are disclosed. The methods include transmitting data from a sensor operably coupled to at least one air-conditioning pack, comparing the transmitted data, determining an overall performance of the air-conditioning system(s) based on the comparing, and providing an indication of the determined overall performance of the air-conditioning system(s).
    Type: Application
    Filed: February 21, 2014
    Publication date: March 23, 2017
    Inventors: Brian David LARDER, Robert William HORABIN, Christopher Joseph CATT, Daniel James HEATH, Johan Arnold SMIT, Frank BEAVEN, Mark John ROBBINS, Julia Ann HOWARD
  • Publication number: 20170068094
    Abstract: A display engine assembly comprises a first imager and a second imager to generate a left image and a right image, respectively, in a head-mounted display device. The left and right images are left and right components, respectively, of a single stereoscopic image. The display engine further comprises an optical waveguide optically coupled to the first imager and the second imager. The optical waveguide is part of a first optical path to convey the left image to a left eye of a user of the head-mounted display device and is also part of a second optical path to convey the right image to a right eye of the user of the head-mounted display device.
    Type: Application
    Filed: September 3, 2015
    Publication date: March 9, 2017
    Inventors: James Randolph Webster, Jeb Wu, Richard James, Steven John Robbins, Yarn Chee Poon, KengHui Lin, Chienchih Hsiung
  • Patent number: 9581820
    Abstract: In embodiments of a multiple waveguide imaging structure, a wearable display device includes left and right imaging units of respective display lens systems to generate an augmented reality image that includes a virtual image. Each of the left and right imaging units include a first waveguide for see-through viewing at a first field of view, where the first waveguide includes a first polarizing beam splitter to reflect light that enters at a first polarization orientation angle and pass through the light that enters at a second polarization orientation angle. Each of the left and right imaging units also include at least a second waveguide for see-through viewing at a second field of view, where the second waveguide includes a second polarizing beam splitter to reflect the light that enters at the first polarization orientation angle and pass through the light that enters at the second polarization orientation angle.
    Type: Grant
    Filed: March 2, 2015
    Date of Patent: February 28, 2017
    Assignee: Microsoft Technology Licensing, LLC
    Inventor: Steven John Robbins
  • Publication number: 20170050953
    Abstract: Disclosed are compounds of Formula 1, including all stereoisomers, N-oxides, and salts thereof, wherein X is O, S or NR5; or X is —C(R6)?C(R7)—, wherein the carbon atom bonded to R6 is also bonded to the carbon atom bonded to R4, and the carbon atom bonded to R7 is also bonded to the phenyl ring moiety in Formula 1; and R1, R2, R3, R4, R5, R6, R7, G and W are as defined in the disclosure. Also disclosed are compositions containing the compounds of Formula 1 and methods for controlling undesired vegetation comprising contacting the undesired vegetation or its environment with an effective amount of a compound or a composition of the invention.
    Type: Application
    Filed: April 27, 2015
    Publication date: February 23, 2017
    Applicant: E.I. DU PONT DE NEMOURS AND COMPANY
    Inventors: Thomas Paul Selby, Nicholas Ryan Deprez, Thomas Martin Stevenson, Andrew Edmund Taggi, John Robbins DeBergh
  • Patent number: 9567106
    Abstract: System and method of identifying a fault in an aircraft having at least one monitored system, including receiving operational data for the at least one monitored system during at least a portion of a flight, receiving user input data from a user input corresponding to the operation of the at least one monitored system, and identifying an actual fault condition, by a controller, when the user input data is determined to be symptomatic of the identified possible fault condition.
    Type: Grant
    Filed: November 21, 2014
    Date of Patent: February 14, 2017
    Assignee: TALERIS GLOBAL LLP
    Inventors: Olivier Paul Jacques Thanh Minh Thuong, Robert William Horabin, Guy Edward Deshotel, Mark John Robbins
  • Patent number: 9558590
    Abstract: Augmented reality light guide display techniques are described. In one or more implementations, an apparatus includes a housing configured in a hand-held form factor, one or more sensors configured to detect a position and orientation of the housing in three dimensions in a physical environment of the housing, a light guide that is at least partially transparent and supported by the housing, a light engine that is optically coupled to the light guide, and one or more modules disposed within the housing and implemented at least partially in hardware. The one or more modules are configured to calculate a position and orientation of an augmentation and cause the light engine to output the augmentation for display using the light guide such that the augmentation is viewable concurrently with at least a portion of the physical environment through the light guide.
    Type: Grant
    Filed: March 28, 2012
    Date of Patent: January 31, 2017
    Assignee: Microsoft Technology Licensing, LLC
    Inventors: William J. Westerinen, Steven John Robbins, Rajeev Badyal, Rod G. Fleck
  • Publication number: 20160234485
    Abstract: A wearable image display system comprises a headpiece, a light engine, and an optical component. The light engine is mounted on the headpiece and configured to generate beams, each of the beams being substantially collimated so that the beams form a virtual image. The optical component located to project an image onto an eye of a wearer and comprising an incoupling structure and an exit structure. The beams are directed from an exit aperture of the light engine to the in-coupling structure of the optical component. The exit structure is arranged to guide the beams onto the eye. The optical component is located between light engine and the eye. The optical component is angled relative to the light engine such that any outwardly reflected versions of the beams propagate clear of the exit aperture.
    Type: Application
    Filed: February 9, 2015
    Publication date: August 11, 2016
    Inventors: Steven John Robbins, Tapani Levola, Pasi Saarikko, Yarn Chee Poon, Lena Adele Wolfe, Erica Lee Towle
  • Publication number: 20160231570
    Abstract: A wearable image display system comprises a headpiece, a first and a second light engine, and a first and a second optical component. The first and second light engines generate a first and a second set of beams respectively, each beam substantially collimated so that the first and second set form a first and a second virtual image respectively. Each optical component is located to project an image onto a first and a second eye of a wearer respectively. The first and second sets of beams are directed to incoupling structures of the first and second optical components respectively. Exit structures of the first and second optical components guide the first and second sets of beams onto the first and second eyes respectively. The optical components are located between the light engines and the eyes. Both of the light engines are mounted to a central portion of the headpiece.
    Type: Application
    Filed: February 9, 2015
    Publication date: August 11, 2016
    Inventors: Tapani Levola, Pasi Saarikko, Steven John Robbins, Yarn Chee Poon, Lena Adele Wolfe, Erica Lee Towle
  • Publication number: 20160144983
    Abstract: System and method of identifying a fault in an aircraft having at least one monitored system, including receiving operational data for the at least one monitored system during at least a portion of a flight, receiving user input data from a user input corresponding to the operation of the at least one monitored system, and identifying an actual fault condition, by a controller, when the user input data is determined to be symptomatic of the identified possible fault condition.
    Type: Application
    Filed: November 21, 2014
    Publication date: May 26, 2016
    Inventors: Olivier Paul Jacques Thanh Minh Thuong, Robert William Horabin, Guy Edward Deshotel, Mark John Robbins
  • Publication number: 20160140783
    Abstract: A method of diagnosing a horizontal stabilizer system fault in an aircraft, where the method includes receiving data relevant to a characteristic of the pitch of the aircraft during flight, comparing the received data to a reference pitch characteristic, diagnosing a fault in the horizontal stabilizer system based on the comparison, and providing an indication of the diagnosed fault.
    Type: Application
    Filed: June 28, 2013
    Publication date: May 19, 2016
    Inventors: Christopher Joseph CATT, Mark John ROBBINS
  • Publication number: 20160097930
    Abstract: The technology provides an optical system for converting a source of projected light to uniform light for a liquid crystal on silicon microdisplay in a confined space, such as in a near-eye display device. The optical system may include a first microlens array, a second microlens array, and a polarizer device disposed between the first microlens array and the second microlens array. The near-eye display device having first and second microlens arrays may be positioned by a support structure in a head-mounted display or head-up display.
    Type: Application
    Filed: October 6, 2014
    Publication date: April 7, 2016
    Inventors: Steven John Robbins, Yarn Chee Poon
  • Patent number: 9298012
    Abstract: In embodiments of eyebox adjustment for interpupillary distance, a first optical lens receives light of an image at a projected orientation of the light, and deviates the light by a deviation angle from the projected orientation of the light. A second optical lens receives the deviated light of the image from the first optical lens at the deviation angle, and alters the deviated light back to the projected orientation of the light for viewing the image. Left and right eyeboxes align with respective left and right eyes that view the image, and a distance between the left and right eyeboxes approximately correlates to an interpupillary distance between the left and right eyes. The light of the image can be laterally shifted to increase or decrease the distance between the left and right eyeboxes.
    Type: Grant
    Filed: December 19, 2013
    Date of Patent: March 29, 2016
    Assignee: Microsoft Technology Licensing, LLC
    Inventors: David D. Bohn, Rod G. Fleck, Steven John Robbins