Patents by Inventor John Robert Dunham

John Robert Dunham has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11174884
    Abstract: Connections between nodes and tubes are provided. An apparatus can include additively manufactured first and second nodes, a tube, and an interconnect connecting the tube to the first and second nodes. An apparatus can include a node having an end portion with inner and outer concentric portions forming an annular gap therebetween, and a tube having an end portion extending into the gap.
    Type: Grant
    Filed: October 24, 2019
    Date of Patent: November 16, 2021
    Assignee: DIVERGENT TECHNOLOGIES. INC.
    Inventors: Kevin Robert Czinger, Broc William TenHouten, John Russell Bucknell, Antonio Bernerd Martinez, Eahab Nagi El Naga, William Bradley Balzer, Zachary Meyer Omohundro, Praveen Varma Penmetsa, Matthew Michael O'Brien, John Franklin Dunham
  • Publication number: 20210257788
    Abstract: An electrical interconnect for passing high speed signals through an electronic system with a high density of signals and high signal integrity. The interconnect includes an electrical connector and a transition portion of a printed circuit board to which the connector is mounted. Signal conductors are connected to pads on the surface of the PCB using edge-to-pad mounting. The pads align with intermediate portions of the signal conductors such that transitions within the connector that could degrade signal integrity are avoided. The signal conductors may be positioned as individually shielded broadside coupled pairs extending in rows within the connector. Surface traces on the PCB connect the pads to signal vias aligned for vertical routing out of the connector footprint. Ground planes underlying the surface traces facilitate a transition from the signal paths in the connector to those in the PCB with low mode conversion avoiding resonances in the connector shields.
    Type: Application
    Filed: January 27, 2021
    Publication date: August 19, 2021
    Applicant: Amphenol Corporation
    Inventors: Marc B. Cartier, JR., John Robert Dunham, Mark W. Gailus, David Levine, Allan Astbury, Vysakh Sivarajan, Daniel B. Provencher, Eric Leo
  • Publication number: 20210234290
    Abstract: An electrical interconnect for passing high speed signals through an electronic system with a high density of signals and high signal integrity. The interconnect includes an electrical connector and a transition portion of a printed circuit board to which the connector is mounted. Signal conductors are connected to pads on the surface of the PCB using edge-to-pad mounting. The pads align with intermediate portions of the signal conductors such that transitions within the connector that could degrade signal integrity are avoided. The signal conductors may be positioned as individually shielded broadside coupled pairs extending in rows within the connector. Surface traces on the PCB connect the pads to signal vias aligned for vertical routing out of the connector footprint. Ground planes underlying the surface traces facilitate a transition from the signal paths in the connector to those in the PCB with low mode conversion avoiding resonances in the connector shields.
    Type: Application
    Filed: January 27, 2021
    Publication date: July 29, 2021
    Applicant: Amphenol Corporation
    Inventors: John Robert Dunham, Marc B. Cartier, JR., Mark W. Gailus, David Levine, Allan Astbury, Vysakh Sivarajan, Daniel B. Provencher, Eric Leo
  • Patent number: 11070006
    Abstract: A modular electrical connector facilitates low loss connections to components on a printed circuit board. A portion is of the connector is formed of one or more first type units with conductive elements designed to be attached to a printed circuit board. Signals passing through those units may be routed to components on the printed circuit board through traces in the board. One or more second type units may be integrated with the connector. Those units may be designed for attachment to a cable, which may provide signal paths to a location on the printed circuit board near relatively distant components.
    Type: Grant
    Filed: August 3, 2018
    Date of Patent: July 20, 2021
    Assignee: Amphenol Corporation
    Inventors: Mark W. Gailus, Allan Astbury, David Manter, Marc B. Cartier, Jr., Vysakh Sivarajan, John Robert Dunham
  • Publication number: 20210218198
    Abstract: An electrical connector module with openings in an insulative support selectively positioned to limit dielectric loss in a signal. The connector may include a first and second conductor including first and second sides between first and second edges. An insulative support holds the first conductor adjacent the second conductor and may have at least five pedestal portions, wherein the first pedestal portion contacts the first side of the first conductor, the second pedestal portion contacts the second side of the first conductor, the third pedestal portion contacts the first side of the second conductor, the fourth pedestal portion contacts the second side of the second conductor, and at least a portion of the fifth pedestal portion is disposed between two edges of the first and second conductors. The pedestal portions may have widths less than the widths of the first and second sides of the first and second conductors.
    Type: Application
    Filed: March 29, 2021
    Publication date: July 15, 2021
    Applicant: Amphenol Corporation
    Inventors: Marc B. Cartier, JR., John Robert Dunham, Vysakh Sivarajan, Mark W. Gailus, David Levine, Michael Joseph Snyder
  • Publication number: 20210194182
    Abstract: A cable termination that provides low signal distortion even at high frequencies. Conductive elements of the cable are fused to edges of signal conductors in a cable connector or other component terminating the cable. For terminating a differential pair, the conductive elements of the cable may be terminated to opposing edges of a pair of signal conductors in the cable termination. The conductive elements may be shaped such that the spacing between signal paths passing through the conductive elements of the cable and into the signal conductors of the cable termination is uniform.
    Type: Application
    Filed: March 8, 2021
    Publication date: June 24, 2021
    Applicant: Amphenol Corporation
    Inventors: Mark W. Gailus, Allan Astbury, David Manter, Marc B. Cartier, JR., Vysakh Sivarajan, John Robert Dunham
  • Publication number: 20210175670
    Abstract: A modular electrical connector with separately shielded signal conductor pairs. The connector may be assembled from modules, each containing a pair of signal conductors with surrounding partially or fully conductive material. Modules of different sizes may be assembled into wafers, which are then assembled into a connector. Wafers may include lossy material. In some embodiments, shielding members of two mating connectors may each have compliant members along their distal portions, such that, the shielding members engage at points of contact at multiple locations, some of which are adjacent the mating edge of each of the mating shielding members.
    Type: Application
    Filed: November 23, 2020
    Publication date: June 10, 2021
    Applicant: Amphenol Corporation
    Inventors: Marc B. Cartier, JR., John Robert Dunham, Mark W. Gailus, Donald A. Girard, JR., David Manter, Tom Pitten, Vysakh Sivarajan, Michael Joseph Snyder
  • Publication number: 20210119371
    Abstract: A modular electrical connector with modular components suitable for assembly into a right angle connector may also be used in forming an orthogonal connector or connector in other desired configurations. The connector modules may be configured through the user of extender modules. Those connector modules may be held together as a right angle connector with a front housing portion, which, in some embodiments, may be shaped differently depending on whether the connector modules are used to form a right angle connector or an orthogonal connector. When designed to form an orthogonal connector, the extender modules may interlock into subarrays, which may be held to other connector components through the use of an extender shell. The mating contact portions on the extender modules may be such that a right angle connector, similarly made with connector modules, may directly mate with the orthogonal connector.
    Type: Application
    Filed: December 28, 2020
    Publication date: April 22, 2021
    Applicant: Amphenol Corporation
    Inventors: Allan Astbury, John Robert Dunham, Marc B. Cartier, JR., Mark W. Gailus, Daniel B. Provencher
  • Patent number: 10965065
    Abstract: An electrical connector module with openings in an insulative support selectively positioned to limit dielectric loss in a signal. The connector may include a first and second conductor including first and second sides between first and second edges. An insulative support holds the first conductor adjacent the second conductor and may have at least five pedestal portions, wherein the first pedestal portion contacts the first side of the first conductor, the second pedestal portion contacts the second side of the first conductor, the third pedestal portion contacts the first side of the second conductor, the fourth pedestal portion contacts the second side of the second conductor, and at least a portion of the fifth pedestal portion is disposed between two edges of the first and second conductors. The pedestal portions may have widths less than the widths of the first and second sides of the first and second conductors.
    Type: Grant
    Filed: March 2, 2020
    Date of Patent: March 30, 2021
    Assignee: Amphenol Corporation
    Inventors: Marc B. Cartier, Jr., John Robert Dunham, Vysakh Sivarajan, Mark W. Gailus, David Levine, Michael Joseph Snyder
  • Publication number: 20210083434
    Abstract: A modular electrical connector with separately shielded signal conductor pairs. In some embodiments, the connector is may be assembled from modules, each containing a pair of signal conductors with surrounding partially or fully conductive material. In some embodiments, the modules may have projecting portions, of conductive and/or dielectric material, that are shaped and positioned to reduce changes in impedance along the signal paths as a function of separation of conductive elements, when the connectors are separated by less than the functional mating range.
    Type: Application
    Filed: November 30, 2020
    Publication date: March 18, 2021
    Applicant: Amphenol Corporation
    Inventors: Mark W. Gailus, John Robert Dunham, Marc B. Cartier, JR., Donald A. Girard, JR.
  • Patent number: 10944214
    Abstract: A cable termination that provides low signal distortion even at high frequencies. Conductive elements of the cable are fused to edges of signal conductors in a cable connector or other component terminating the cable. For terminating a differential pair, the conductive elements of the cable may be terminated to opposing edges of a pair of signal conductors in the cable termination. The conductive elements may be shaped such that the spacing between signal paths passing through the conductive elements of the cable and into the signal conductors of the cable termination is uniform.
    Type: Grant
    Filed: August 3, 2018
    Date of Patent: March 9, 2021
    Assignee: Amphenol Corporation
    Inventors: Mark W. Gailus, Allan Astbury, David Manter, Marc B. Cartier, Jr., Vysakh Sivarajan, John Robert Dunham
  • Patent number: 10879643
    Abstract: A modular electrical connector with modular components suitable for assembly into a right angle connector may also be used in forming an orthogonal connector or connector in other desired configurations. The connector modules may be configured through the user of extender modules. Those connector modules may be held together as a right angle connector with a front housing portion, which, in some embodiments, may be shaped differently depending on whether the connector modules are used to form a right angle connector or an orthogonal connector. When designed to form an orthogonal connector, the extender modules may interlock into subarrays, which may be held to other connector components through the use of an extender shell. The mating contact portions on the extender modules may be such that a right angle connector, similarly made with connector modules, may directly mate with the orthogonal connector.
    Type: Grant
    Filed: November 26, 2018
    Date of Patent: December 29, 2020
    Assignee: Amphenol Corporation
    Inventors: Allan Astbury, John Robert Dunham, Marc B. Cartier, Jr., Mark W. Gailus, Daniel B. Provencher
  • Patent number: 10855034
    Abstract: A modular electrical connector with separately shielded signal conductor pairs. In some embodiments, the connector is may be assembled from modules, each containing a pair of signal conductors with surrounding partially or fully conductive material. In some embodiments, the modules may have projecting portions, of conductive and/or dielectric material, that are shaped and positioned to reduce changes in impedance along the signal paths as a function of separation of conductive elements, when the connectors are separated by less than the functional mating range.
    Type: Grant
    Filed: December 28, 2018
    Date of Patent: December 1, 2020
    Assignee: Amphenol Corporation
    Inventors: Mark W. Gailus, John Robert Dunham, Marc B. Cartier, Jr., Donald A. Girard, Jr.
  • Publication number: 20200373689
    Abstract: A modular high speed, high density electrical connector configurable for use in multiple configurations, including a direct attach orthogonal configuration. The connector is assembled with modules that include shielded pairs of signal conductors with mating ends that are rotated approximately 45 degrees with respect to intermediate portions of the signal conductors. The connector may have a mating interface with receptacles in one connector and pins in the mating connector. The pins may be small diameter and may be implemented with superelastic wires so as to resist damage despite having very small effective diameter. A compact mating interface resulting from small diameter mating contact portions may enable other portions of the connector, including the shielding surrounding the signal conductors to be smaller, which may raise the resonant frequency of the connector and extend its bandwidth.
    Type: Application
    Filed: May 19, 2020
    Publication date: November 26, 2020
    Applicant: Amphenol Corporation
    Inventors: Marc B. Cartier, John Robert Dunham, Mark W. Gailus, John Pitten
  • Patent number: 10847937
    Abstract: A modular electrical connector with separately shielded signal conductor pairs. The connector may be assembled from modules, each containing a pair of signal conductors with surrounding partially or fully conductive material. Modules of different sizes may be assembled into wafers, which are then assembled into a connector. Wafers may include lossy material. In some embodiments, shielding members of two mating connectors may each have compliant members along their distal portions, such that, the shielding members engage at points of contact at multiple locations, some of which are adjacent the mating edge of each of the mating shielding members.
    Type: Grant
    Filed: July 8, 2019
    Date of Patent: November 24, 2020
    Assignee: Amphenol Corporation
    Inventors: Marc B. Cartier, Jr., John Robert Dunham, Mark W. Gailus, Donald A. Girard, Jr., David Manter, Tom Pitten, Vysakh Sivarajan, Michael Joseph Snyder
  • Patent number: 10840649
    Abstract: A high speed, high density connector has an organizer. Contact tails of the connector pass through the organizer. The organizer has an insulative body. Portions of the organizer are selectively made more conductive by plating on the body. Those plated portions electrically connect contact tails of ground conductors passing through the organizer. The plated portions are lossy or conductive.
    Type: Grant
    Filed: September 17, 2018
    Date of Patent: November 17, 2020
    Assignee: Amphenol Corporation
    Inventors: Mark W. Gailus, John Robert Dunham, Marc B. Cartier, Jr., Donald A. Girard, Jr.
  • Publication number: 20200259297
    Abstract: A modular electrical connector with broad-side coupled signal conductors in a right angle intermediate portion. Broadside coupling provides balanced pairs for very high frequency operation. The connector may be assembled with multiple subassemblies, each of which may have multiple pairs of signal conductors. The subassemblies may be formed from an insulative portion having grooves in opposite sides into which the intermediate portions of signal conductors. Covers, holding the signal conductors in the grooves, may establish the position of the signal conductors relative to reference conductors at the exterior of subassembly, so as to provide a controlled impedance. Lossy material may be positioned between the pairs in a subassembly and/or may contact the reference conductors of the subassemblies, and the lossy material of the subassemblies may in turn be connected with a conductive structure.
    Type: Application
    Filed: April 24, 2020
    Publication date: August 13, 2020
    Applicant: Amphenol Corporation
    Inventors: Marc B. Cartier, JR., John Robert Dunham, Mark W. Gailus, Donald A. Girard, JR., Brian Kirk, David Levine, Vysakh Sivarajan
  • Patent number: 10707626
    Abstract: A modular electrical connector with broad-side coupled signal conductors in a right angle intermediate portion and edge coupled end portions. Broadside coupling provides balanced pairs for very high frequency operation, while edge coupling provides a high density interconnection system at low cost. Each module has separately shielded signal conductor pairs. The shielding is shaped to avoid or suppress undesirable propagation modes within an enclosure formed by shielding per module. Lossy material is selectively placed within and outside the shielding per module to likewise avoid or suppress unwanted signal propagation.
    Type: Grant
    Filed: January 29, 2018
    Date of Patent: July 7, 2020
    Assignee: Amphenol Corporation
    Inventors: Marc B. Cartier, Jr., John Robert Dunham, Mark W. Gailus, Donald A. Girard, Jr., Brian Kirk, David Levine, Vysakh Sivarajan
  • Patent number: D892058
    Type: Grant
    Filed: October 12, 2018
    Date of Patent: August 4, 2020
    Assignee: Amphenol Corporation
    Inventors: Marc B. Cartier, Jr., Mark W. Gailus, David Levine, Vysakh Sivarajan, John Robert Dunham, John Pitten
  • Patent number: D908633
    Type: Grant
    Filed: October 12, 2018
    Date of Patent: January 26, 2021
    Assignee: Amphenol Corporation
    Inventors: Marc B. Cartier, Jr., Mark W. Gailus, David Levine, Vysakh Sivarajan, John Robert Dunham, John Pitten