Patents by Inventor John Rogers Gilleland

John Rogers Gilleland has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9159459
    Abstract: Illustrative embodiments provide systems, applications, apparatuses, and methods related to nuclear fission deflagration wave reactor cooling. Illustrative embodiments and aspects include, without limitation, nuclear fission deflagration wave reactors, methods of transferring heat of a nuclear fission deflagration wave reactor, methods of transferring heat from a nuclear fission deflagration wave reactor, methods of transferring heat within a nuclear fission deflagration wave reactor, and the like.
    Type: Grant
    Filed: September 29, 2008
    Date of Patent: October 13, 2015
    Assignee: TERRAPOWER, LLC
    Inventors: Charles E. Ahlfeld, John Rogers Gilleland, Roderick A. Hyde, Muriel Y. Ishikawa, David G. McAlees, Nathan P. Myhrvold, Thomas Allan Weaver, Charles Whitmer, Lowell L. Wood, Jr.
  • Patent number: 9011613
    Abstract: Illustrative embodiments provide systems, methods, apparatuses, and applications related to annealing nuclear fission reactor materials.
    Type: Grant
    Filed: April 16, 2013
    Date of Patent: April 21, 2015
    Assignee: TerraPower, LLC
    Inventors: Charles E. Ahlfeld, John Rogers Gilleland, Roderick A. Hyde, David G. McAlees, Jon David McWhirter, Ashok Odedra, Clarence T. Tegreene, Joshua C. Walter, Kevan D. Weaver, Charles Whitmer, Lowell L. Wood, Jr., George B. Zimmerman
  • Patent number: 8971474
    Abstract: Exemplary embodiments provide automated nuclear fission reactors and methods for their operation. Exemplary embodiments and aspects include, without limitation, re-use of nuclear fission fuel, alternate fuels and fuel geometries, modular fuel cores, fast fluid cooling, variable burn-up, programmable nuclear thermostats, fast flux irradiation, temperature-driven surface area/volume ratio neutron absorption, low coolant temperature cores, refueling, and the like.
    Type: Grant
    Filed: March 16, 2009
    Date of Patent: March 3, 2015
    Assignee: TerraPower, LLC
    Inventors: John Rogers Gilleland, Roderick A. Hyde, Muriel Y. Ishikawa, Nathan P. Myhrvold, Lowell L. Wood, Jr.
  • Patent number: 8942338
    Abstract: A traveling wave nuclear fission reactor, fuel assembly, and a method of controlling burnup therein. In a traveling wave nuclear fission reactor, a nuclear fission reactor fuel assembly comprises a plurality of nuclear fission fuel rods that are exposed to a deflagration wave burnfront that, in turn, travels through the fuel rods. The excess reactivity is controlled by a plurality of movable neutron absorber structures that are selectively inserted into and withdrawn from the fuel assembly in order to control the excess reactivity and thus the location, speed and shape of the burnfront. Controlling location, speed and shape of the burnfront manages neutron fluence seen by fuel assembly structural materials in order to reduce risk of temperature and irradiation damage to the structural materials.
    Type: Grant
    Filed: April 6, 2009
    Date of Patent: January 27, 2015
    Assignee: TerraPower, LLC.
    Inventors: Charles E. Ahlfeld, John Rogers Gilleland, Roderick A. Hyde, Muriel Y. Ishikawa, David G. McAlees, Nathan P. Myhrvold, Charles Whitmer, Lowell L. Wood, Jr., George B. Zimmerman
  • Patent number: 8784726
    Abstract: Illustrative embodiments provide systems, methods, apparatuses, and applications related to annealing nuclear fission reactor materials.
    Type: Grant
    Filed: November 3, 2008
    Date of Patent: July 22, 2014
    Assignee: TerraPower, LLC
    Inventors: Charles E. Ahlfeld, John Rogers Gilleland, Roderick A. Hyde, David G. McAlees, Jon David McWhirter, Ashok Odedra, Clarence T. Tegreene, Joshua C. Walter, Kevan D. Weaver, Charles Whitmer, Lowell L. Wood, Jr., George B. Zimmerman
  • Publication number: 20140153685
    Abstract: Illustrative embodiments provide systems, methods, apparatuses, and applications related to annealing nuclear fission reactor materials.
    Type: Application
    Filed: June 13, 2013
    Publication date: June 5, 2014
    Inventors: Charles E. Ahlfeld, John Rogers Gilleland, Roderick A. Hyde, David G. McAlees, Jon David McWhirter, Ashok Odedra, Clarence T. Tegreene, Joshua C. Walter, Kevan D. Weaver, Charles Whitmer, Lowell L. Wood, JR., George B. Zimmerman
  • Patent number: 8721810
    Abstract: Illustrative embodiments provide systems, methods, apparatuses, and applications related to annealing nuclear fission reactor materials.
    Type: Grant
    Filed: November 3, 2008
    Date of Patent: May 13, 2014
    Assignee: The Invention Science Fund I, LLC
    Inventors: Charles E. Ahlfeld, John Rogers Gilleland, Roderick A. Hyde, David G. McAlees, Jon David McWhirter, Ashok Odedra, Clarence T. Tegreene, Joshua C. Walter, Kevan D. Weaver, Charles Whitmer, Lowell L. Wood, Jr., George B. Zimmerman
  • Patent number: 8529713
    Abstract: Illustrative embodiments provide systems, methods, apparatuses, and applications related to annealing nuclear fission reactor materials.
    Type: Grant
    Filed: September 18, 2008
    Date of Patent: September 10, 2013
    Assignee: The Invention Science Fund I, LLC
    Inventors: Charles E. Ahlfeld, John Rogers Gilleland, Roderick A. Hyde, David G. McAlees, Jon David McWhirter, Ashok Odedra, Clarence T. Tegreene, Joshua C. Walter, Kevan D. Weaver, Charles Whitmer, Lowell L. Wood, Jr., George B. Zimmerman
  • Publication number: 20110164713
    Abstract: Disclosed embodiments include nuclear fission reactor cores, nuclear fission reactors, methods of operating a nuclear fission reactor, and methods of managing excess reactivity in a nuclear fission reactor.
    Type: Application
    Filed: December 30, 2010
    Publication date: July 7, 2011
    Inventors: Charles E. Ahlfeld, Thomas M. Burke, Tyler S. Ellis, John Rogers Gilleland, Jonatan Hejzlar, Pavel Hejzlar, Roderick A. Hyde, David G. McAlees, Jon D. McWhirter, Ashok Odedra, Robert C. Petroski, Nicholas W. Touran, Joshua C. Walter, Kevan D. Weaver, Thomas Allan Weaver, Charles Whitmer, Lowell L. Wood, JR., George B. Zimmerman
  • Publication number: 20110164714
    Abstract: Disclosed embodiments include nuclear fission reactor cores, nuclear fission reactors, methods of operating a nuclear fission reactor, and methods of managing excess reactivity in a nuclear fission reactor.
    Type: Application
    Filed: December 30, 2010
    Publication date: July 7, 2011
    Inventors: Charles E. Ahlfeld, Thomas M. Burke, Tyler S. Ellis, John Rogers Gilleland, Jonatan Hejzlar, Pavel Hejzlar, Roderick A. Hyde, David G. McAlees, Jon D. McWhirter, Ashok Odedra, Robert C. Petroski, Nicholas W. Touran, Joshua C. Walter, Kevan D. Weaver, Thomas Allan Weaver, Charles Whitmer, Lowell L. Wood, JR., George B. Zimmerman
  • Publication number: 20110164712
    Abstract: Disclosed embodiments include nuclear fission reactor cores, nuclear fission reactors, methods of operating a nuclear fission reactor, and methods of managing excess reactivity in a nuclear fission reactor.
    Type: Application
    Filed: December 30, 2010
    Publication date: July 7, 2011
    Inventors: Charles E. Ahlfeld, Thomas M. Burke, Tyler S. Ellis, John Rogers Gilleland, Jonatan Hejzlar, Pavel Hejzlar, Roderick A. Hyde, David G. McAlees, Jon D. McWhirter, Ashok Odedra, Robert C. Petroski, Nicholas W. Touran, Joshua C. Walter, Kevan D. Weaver, Thomas Allan Weaver, Charles Whitmer, Lowell L. Wood, JR., George B. Zimmerman
  • Publication number: 20110110484
    Abstract: Disclosed embodiments include nuclear fission reactor cores, nuclear fission reactors, methods of operating a nuclear fission reactor, and methods of managing excess reactivity in a nuclear fission reactor.
    Type: Application
    Filed: November 2, 2010
    Publication date: May 12, 2011
    Inventors: Charles E. Ahlfeld, Thomas M. Burke, Tyler S. Ellis, John Rogers Gilleland, Jonatan Hejzlar, Pavel Hejzlar, Roderick A. Hyde, David G. McAlees, Jon D. McWhirter, Ashok Odedra, Robert C. Petroski, Nicholas W. Touran, Joshua C. Walter, Kevan D. Weaver, Thomas Allan Weaver, Charles Whitmer, Lowell L. Wood, JR., George B. Zimmerman
  • Publication number: 20100266091
    Abstract: A nuclear fission reactor fuel assembly and system configured for controlled removal of a volatile fission product and heat released by a burn wave in a traveling wave nuclear fission reactor and method for same. The fuel assembly comprises an enclosure adapted to enclose a porous nuclear fuel body having the volatile fission product therein. A fluid control subassembly is coupled to the enclosure and adapted to control removal of at least a portion of the volatile fission product from the porous nuclear fuel body. In addition, the fluid control subassembly is capable of circulating a heat removal fluid through the porous nuclear fuel body in order to remove heat generated by the nuclear fuel body.
    Type: Application
    Filed: July 7, 2009
    Publication date: October 21, 2010
    Inventors: Charles E. Ahlfeld, John Rogers Gilleland, Roderick A. Hyde, Muriel Y. Ishikawa, David G. McAlees, Nathan P. Myhrvold, Clarence T. Tegreene, Thomas Allan Weaver, Charles Whitmer, Victoria Y.H. Wood, Lowell L. Wood, JR., George B. Zimmerman
  • Publication number: 20100266084
    Abstract: A nuclear fission reactor fuel assembly and system configured for controlled removal of a volatile fission product and heat released by a burn wave in a traveling wave nuclear fission reactor and method for same. The fuel assembly comprises an enclosure adapted to enclose a porous nuclear fuel body having the volatile fission product therein. A fluid control subassembly is coupled to the enclosure and adapted to control removal of at least a portion of the volatile fission product from the porous nuclear fuel body. In addition, the fluid control subassembly is capable of circulating a heat removal fluid through the porous nuclear fuel body in order to remove heat generated by the nuclear fuel body.
    Type: Application
    Filed: April 16, 2009
    Publication date: October 21, 2010
    Inventors: Charles E. Ahlfeld, John Rogers Gilleland, Roderick A. Hyde, Muriel Y. Ishikawa, David G. McAlees, Nathan P. Myhrvold, Clarence T. Tegreene, Thomas Allan Weaver, Charles Whitmer, Victoria Y.H. Wood, Lowell L. Wood, JR., George B. Zimmerman
  • Publication number: 20100266089
    Abstract: A nuclear fission reactor fuel assembly and system configured for controlled removal of a volatile fission product and heat released by a burn wave in a traveling wave nuclear fission reactor and method for same. The fuel assembly comprises an enclosure adapted to enclose a porous nuclear fuel body having the volatile fission product therein. A fluid control subassembly is coupled to the enclosure and adapted to control removal of at least a portion of the volatile fission product from the porous nuclear fuel body. In addition, the fluid control subassembly is capable of circulating a heat removal fluid through the porous nuclear fuel body in order to remove heat generated by the nuclear fuel body.
    Type: Application
    Filed: July 7, 2009
    Publication date: October 21, 2010
    Inventors: Charles E. Ahlfeld, John Rogers Gilleland, Roderick A. Hyde, Muriel Y. Ishikawa, David G. McAlees, Nathan P. Myhrvold, Clarence T. Tegreene, Thomas Allan Weaver, Charles Whitmer, Victoria Y.H. Wood, Lowell L. Wood, JR., George B. Zimmerman
  • Publication number: 20100266090
    Abstract: A nuclear fission reactor fuel assembly and system configured for controlled removal of a volatile fission product and heat released by a burn wave in a traveling wave nuclear fission reactor and method for same. The fuel assembly comprises an enclosure adapted to enclose a porous nuclear fuel body having the volatile fission product therein. A fluid control subassembly is coupled to the enclosure and adapted to control removal of at least a portion of the volatile fission product from the porous nuclear fuel body. In addition, the fluid control subassembly is capable of circulating a heat removal fluid through the porous nuclear fuel body in order to remove heat generated by the nuclear fuel body.
    Type: Application
    Filed: July 7, 2009
    Publication date: October 21, 2010
    Inventors: Charles E. Ahlfeld, John Rogers Gilleland, Roderick A. Hyde, Muriel Y. Ishikawa, David G. McAlees, Nathan P. Myhrvold, Clarence T. Tegreene, Thomas Allan Weaver, Charles Whitmer, Victoria Y.H. Wood, Lowell L. Wood, JR., George B. Zimmerman
  • Publication number: 20100254502
    Abstract: A traveling wave nuclear fission reactor, fuel assembly, and a method of controlling burnup therein. In a traveling wave nuclear fission reactor, a nuclear fission reactor fuel assembly comprises a plurality of nuclear fission fuel rods that are exposed to a deflagration wave burnfront that, in turn, travels through the fuel rods. The excess reactivity is controlled by a plurality of movable neutron absorber structures that are selectively inserted into and withdrawn from the fuel assembly in order to control the excess reactivity and thus the location, speed and shape of the burnfront. Controlling location, speed and shape of the burnfront manages neutron fluence seen by fuel assembly structural materials in order to reduce risk of temperature and irradiation damage to the structural materials.
    Type: Application
    Filed: July 1, 2009
    Publication date: October 7, 2010
    Inventors: Charles E. Ahlfeld, John Rogers Gilleland, Roderick A. Hyde, Muriel Y. Ishikawa, David G. McAlees, Nathan P. Myhrvold, Charles Whitmer, Lowell L. Wood, JR., George B. Zimmerman
  • Publication number: 20100254501
    Abstract: A traveling wave nuclear fission reactor, fuel assembly, and a method of controlling burnup therein. In a traveling wave nuclear fission reactor, a nuclear fission reactor fuel assembly comprises a plurality of nuclear fission fuel rods that are exposed to a deflagration wave burnfront that, in turn, travels through the fuel rods. The excess reactivity is controlled by a plurality of movable neutron absorber structures that are selectively inserted into and withdrawn from the fuel assembly in order to control the excess reactivity and thus the location, speed and shape of the burnfront. Controlling location, speed and shape of the burnfront manages neutron fluence seen by fuel assembly structural materials in order to reduce risk of temperature and irradiation damage to the structural materials.
    Type: Application
    Filed: April 6, 2009
    Publication date: October 7, 2010
    Inventors: Charles E. Ahlfeld, John Rogers Gilleland, Roderick A. Hyde, Muriel Y. Ishikawa, David G. McAlees, Nathan P. Myhrvold, Charles Whitmer, Lowell L. Wood, JR., George B. Zimmerman
  • Publication number: 20100065164
    Abstract: Illustrative embodiments provide systems, methods, apparatuses, and applications related to annealing nuclear fission reactor materials.
    Type: Application
    Filed: September 18, 2008
    Publication date: March 18, 2010
    Inventors: Charles E. Ahlfeld, John Rogers Gilleland, Roderick A. Hyde, David G. McAlees, Jon David McWhirter, Ashok Odedra, Clarence T. Tegreene, Joshua C. Walter, Kevan D. Weaver, Charles Whitmer, Lowell L. Wood, JR., George B. Zimmerman
  • Publication number: 20100065165
    Abstract: Illustrative embodiments provide systems, methods, apparatuses, and applications related to annealing nuclear fission reactor materials.
    Type: Application
    Filed: November 3, 2008
    Publication date: March 18, 2010
    Inventors: Charles E. Ahlfeld, John Rogers Gilleland, Roderick A. Hyde, David G. McAlees, Jon David McWhirter, Ashok Odedra, Clarence T. Tegreene, Joshua C. Walter, Kevan D. Weaver, Charles Whitmer, Lowell L. Wood, JR., George B. Zimmerman