Patents by Inventor John S. Buchanan

John S. Buchanan has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7858832
    Abstract: A process for producing sec-butylbenzene comprises contacting a feed comprising benzene and a C4 alkylating agent under alkylation conditions comprising a temperature of about 110° C. to about 150° C. with a catalyst comprising at least one molecular sieve having an X-ray diffraction pattern including d-spacing maxima at 12.4±0.25, 6.9±0.15, 3.57±0.07 and 3.42±0.07 Angstrom. The sec-butylbenzene can be then oxidized to produce a hydroperoxide and the hydroperoxide decomposed to produce phenol and methyl ethyl ketone.
    Type: Grant
    Filed: February 8, 2007
    Date of Patent: December 28, 2010
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Jane C. Cheng, John S. Buchanan, Jon E. Stanat, Christine N. Elia, Jihad M. Dakka
  • Publication number: 20100317895
    Abstract: In a process for producing cyclohexylbenzene, hydrogen and a liquid feed comprising benzene are introduced into a reaction zone and are contacted in the reaction zone under hydroalkylation conditions to produce cyclohexylbenzene. An effluent stream comprising cyclohexylbenzene and unreacted benzene is removed from the reaction zone and is divided into at least first and second portions, wherein the mass ratio of the effluent stream first portion to the effluent stream second portion is at least 2:1. The effluent stream first portion is then cooled and the cooled effluent stream first portion is recycled to the reaction zone.
    Type: Application
    Filed: January 13, 2009
    Publication date: December 16, 2010
    Inventors: John S. Buchanan, Jane C. Cheng, Tan-Jen Chen, James R. Lattner
  • Patent number: 7834218
    Abstract: A process for producing phenol and methyl ethyl ketone comprises contacting benzene and a C4 alkylating agent under alkylation conditions and in the presence of an alkylation catalyst comprising at least one molecular sieve of the MCM-22 family to produce an alkylation effluent comprising secbutylbenzene; wherein the contacting is conducted in a plurality of reaction zones and the C4 alkylating agent secbutylbenzene fraction is recovered from the alkylation effluent and comprises at least 95 wt % sec-butylbenzene, less than 100 wt ppm of C8+ olefins, and less than 0.5 wt % of isobutylbenzene and tert-butylbenzene. The sec-butylbenzene fraction is then oxidized to produce sec-butylbenzene hydroperoxide and the hydroperoxide is cleaved to produce phenol and methyl ethyl ketene.
    Type: Grant
    Filed: February 8, 2007
    Date of Patent: November 16, 2010
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Jihad M. Dakka, Jon E. Stanat, Francisco M. Benitez, John S. Buchanan, Jane C. Cheng, Jeffrey T. Elks
  • Patent number: 7812196
    Abstract: A process for producing phenol and methyl ethyl ketone comprises contacting benzene and a C4 olefin under alkylation conditions and in the presence of an alkylation catalyst to produce an alkylation effluent comprising sec-butylbenzene and C8+ olefins. The alkylation effluent is then treated to reduce the amount of said C8+ olefins and produce a treated effluent, whereafter the sec-butylbenzene in the treated effluent is oxidized to produce a hydroperoxide and the hydroperoxide is cleaved to produce phenol and methyl ethyl ketone.
    Type: Grant
    Filed: February 8, 2007
    Date of Patent: October 12, 2010
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Jihad M. Dakka, Edmund J. Mozeleski, Jane C. Cheng, Francisco M. Benitez, Jon E. Stanat, John S. Buchanan
  • Publication number: 20100248944
    Abstract: A substantially surface-deactivated catalyst composition that is stable at least to 300° C. The catalyst includes a zeolite catalyst (e.g., ZSM-22, ZSM-23, or ZSM-57) having active internal Brönsted acid sites and a surface-deactivating amount of a rare earth or yttrium oxide (e.g., chosen from lanthanum oxide or lanthanides oxide). This to catalyst is preferably used in a process for producing a higher olefin by oligomerizing a light olefin, wherein the process includes contacting a light olefin under oligomerization conditions with the substantially surface-deactivated catalyst composition.
    Type: Application
    Filed: June 8, 2010
    Publication date: September 30, 2010
    Applicant: ExxonMobil Research and Engineering Company
    Inventors: Jane C. Cheng, Sal Miseo, Stuart L. Soled, John S. Buchanan, Jennifer S. Feeley
  • Patent number: 7799956
    Abstract: A process for producing phenol and methyl ethyl ketone comprises contacting benzene with a C4 alkylating agent under alkylation conditions with catalyst comprising zeolite beta or a molecular sieve having an X-ray diffraction pattern including d-spacing maxima at 12.4±0.25, 6.9±0.15, 3.57±0.07 and 3.42±0.07 Angstrom to produce an alkylation effluent comprising sec-butylbenzene. The sec-butylbenzene is then oxidized to produce a hydroperoxide and the hydroperoxide is decomposed to produce phenol and methyl ethyl ketone.
    Type: Grant
    Filed: August 5, 2005
    Date of Patent: September 21, 2010
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Jane Chi-ya Cheng, John S. Buchanan, Doron Levin, Michael A. Steckel, Jihad M. Dakka, James P. Stokes, John L. Robbins, Jon E. Stanat, Charles M. Smith, José G. Santiesteban
  • Patent number: 7759533
    Abstract: A substantially surface-deactivated catalyst composition that is stable at least to 300° C. The catalyst includes a zeolite catalyst (e.g., ZSM-22, ZSM-23, or ZSM-57) having active internal Brönsted acid sites and a surface-deactivating amount of a rare earth or yttrium oxide (e.g., chosen from lanthanum oxide or lanthanides oxide). This catalyst is preferably used in a process for producing a higher olefin by oligomerizing a light olefin, wherein the process includes contacting a light olefin under oligomerization conditions with the substantially surface-deactivated catalyst composition.
    Type: Grant
    Filed: October 5, 2007
    Date of Patent: July 20, 2010
    Assignee: ExxonMobil Research and Engineering Company
    Inventors: Jane C. Cheng, Sal Miseo, Stuart L. Soled, John S. Buchanan, Jennifer S. Feeley
  • Patent number: 7687672
    Abstract: The present invention relates to an in-line method for generating comonomer, such as 1-hexene or 1-octene, from monomer, such as ethylene. The comonomer generated is directly transported, without isolation or storage, to a polyethylene polymerization reactor.
    Type: Grant
    Filed: February 3, 2006
    Date of Patent: March 30, 2010
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: John S. Buchanan, Timothy D. Shaffer
  • Publication number: 20090312580
    Abstract: A process for producing sec-butylbenzene comprises contacting a feed comprising benzene and a C4 alkylating agent under alkylation conditions comprising a temperature of about 110° C. to about 150° C. with a catalyst comprising at least one molecular sieve having an X-ray diffraction pattern including d-spacing maxima at 12.4±0.25, 6.9±0.15, 3.57±0.07 and 3.42±0.07 Angstrom. The sec-butylbenzene can be then oxidized to produce a hydroperoxide and the hydroperoxide decomposed to produce phenol and methyl ethyl ketone.
    Type: Application
    Filed: February 8, 2007
    Publication date: December 17, 2009
    Inventors: Jane C. Cheng, John S. Buchanan, Jon E. Stanat, Christine N. Elia, Jihad M. Dakka
  • Publication number: 20090306433
    Abstract: A process for producing phenol and methyl ethyl ketone comprises contacting benzene and a C4 olefin under alkylation conditions and in the presence of an alkylation catalyst to produce an alkylation effluent comprising sec-butylbenzene and C8+ olefins. The alkylation effluent is then treated to reduce the amount of said C8+ olefins and produce a treated effluent, whereafter the sec-butylbenzene in the treated effluent is oxidized to produce a hydroperoxide and the hydroperoxide is cleaved to produce phenol and methyl ethyl ketone.
    Type: Application
    Filed: February 8, 2007
    Publication date: December 10, 2009
    Inventors: Jihad M. Dakka, Edmund J. Mozeleski, Jane C. Cheng, Francisco M. Benitez, Jon E. Stanat, John S. Buchanan
  • Publication number: 20090187047
    Abstract: A process for producing phenol and methyl ethyl ketone comprises contacting benzene and a C4 alkylating agent under alkylation conditions and in the presence of an alkylation catalyst comprising at least one molecular sieve of the MCM-22 family to produce an alkylation effluent comprising secbutylbenzene; wherein the contacting is conducted in a plurality of reaction zones and the C4 alkylating agent secbutylbenzene fraction is recovered from the alkylation effluent and comprises at least 95 wt % sec-butylbenzene, less than 100 wt ppm of C8+ olefins, and less than 0.5 wt % of isobutylbenzene and tert-butylbenzene. The sec-butylbenzene fraction is then oxidized to produce sec-butylbenzene hydroperoxide and the hydroperoxide is cleaved to produce phenol and methyl ethyl ketone.
    Type: Application
    Filed: February 8, 2007
    Publication date: July 23, 2009
    Inventors: Jihad M. Dakka, Jon E. Stanat, Francisco M. Benitez, John S. Buchanan, Jane C. Cheng, Jeffrey T. Elks
  • Publication number: 20090093663
    Abstract: A substantially surface-deactivated catalyst composition that is stable at least to 300° C. The catalyst includes a zeolite catalyst (e.g., ZSM-22, ZSM-23, or ZSM-57) having active internal Brönsted acid sites and a surface-deactivating amount of a rare earth or yttrium oxide (e.g., chosen from lanthanum oxide or lanthanides oxide). This catalyst is preferably used in a process for producing a higher olefin by oligomerizing a light olefin, wherein the process includes contacting a light olefin under oligomerization conditions with the substantially surface-deactivated catalyst composition.
    Type: Application
    Filed: October 5, 2007
    Publication date: April 9, 2009
    Inventors: Jane C. Cheng, Sal Miseo, Stuart L. Soled, John S. Buchanan, Jennifer S. Feeley
  • Publication number: 20090093657
    Abstract: A process for preparing poly alpha olefins from a Fisher-Tropsch product. The process comprising the steps of contacting a C5-C18 fraction of an alpha-olefinic hydrocarbon mixture produced from thermal cracking a C16-C40 Fisher-Tropsch product with an oligomerization catalyst under conditions to produce an oligomerized product; and fractionating the oligomerized product to obtain a fractionated product having an average carbon number greater than 30. A process for preparing lubricant base stocks from a Fisher-Tropsch product is also provided.
    Type: Application
    Filed: October 5, 2007
    Publication date: April 9, 2009
    Inventors: John S. Buchanan, Margaret M. Wu, Lorenzo DeCaul
  • Patent number: 7276638
    Abstract: The invention relates to a process for producing alkylated aromatic hydrocarbons, preferably with an oxygen or sulfur containing alkylating agent, in the presence of a multi-component molecular sieve catalyst composition that includes a molecular sieve and an active metal oxide. The invention is also directed to methods of making and formulating the multi-component molecular sieve catalyst composition useful in producing alkylated aromatics.
    Type: Grant
    Filed: March 29, 2006
    Date of Patent: October 2, 2007
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: Jihad M. Dakka, James C. Vartuli, John S. Buchanan, Jose G. Santiesteban, Doron Levin, Lorenzo C. DeCaul
  • Patent number: 7119239
    Abstract: A process is provided for the production of xylenes from reformate. The process is carried out by methylating under conditions effective for the methylation, the benzene/toluene present in the reformate outside the reforming loop, to produce a resulting product having a higher xylenes content than the reformate. Greater than equilibrium amounts of para-xylene can be produced by the process.
    Type: Grant
    Filed: December 24, 2003
    Date of Patent: October 10, 2006
    Assignee: ExxonMobil Chemical Patents Inc.
    Inventors: David L. Johnson, Robert G. Tinger, Robert A. Ware, John S. Buchanan, Xiaobing Feng, Shifang Luo, Gary D. Mohr
  • Publication number: 20040158111
    Abstract: A process is provided for the production of xylenes from reformate. The process is carried out by methylating under conditions effective for the methylation, the benzene/toluene present in the reformate outside the reforming loop, to produce a resulting product having a higher xylenes content than the reformate. Greater than equilibrium amounts of para-xylene can be produced by the process.
    Type: Application
    Filed: December 24, 2003
    Publication date: August 12, 2004
    Inventors: David L. Johnson, Robert G. Tinger, Robert A. Ware, John S. Buchanan, Xiaobing Feng, Shifang Luo, Gary D. Mohr
  • Patent number: 6105941
    Abstract: This invention is directed to a cyclonic vapor/liquid contacting device, wherein liquid exiting the cyclonic device is directed primarily to one side, and distillation or related mass transfer or heat transfer processes employing its use, such as fluid catalytic cracking. Liquid feed is introduced near the floor of the cyclone via downcomer or plenum. Vapor enters through sieve holes in the bottom of the cyclonic device. Near the floor are angled tabs or vanes that impart a spin to the vapor rising up through the floor. The tabs or vanes mix the liquid and vapor. The liquid is then thrown toward the cyclone wall, where it exits through slots in the wall. Preferably, a second set of tabs or vanes, located about in the middle of the cyclone, imparts additional spin to the vapor and entrained liquid rising through the cyclone. This improves liquid collection by the cyclone, especially in cases where a heavy liquid load dampens the spin action of the vapor in the base of the cyclone.
    Type: Grant
    Filed: July 22, 1998
    Date of Patent: August 22, 2000
    Assignee: Exxon Research and Engineering Company
    Inventors: John S. Buchanan, Berne K. Stober
  • Patent number: 6030597
    Abstract: This invention is directed to an improved process for conversion of H2S to sulfur, using MOST(Mobil Offgas Sulfur Treatment) catalyst or sorbent. The sorbent is typically a magnesium-aluminate spinet, with oxidation promoters such as ceria and vanadia. H.sub.2 S from the feed gas is used to regenerate sulfated sorbent, simultaneously producing elemental sulfur which is then condensed out. The improvement involves combusting part of the feed, converting some of the feed H.sub.2 S to SO.sub.2 prior to contacting the sulfated sorbent. Thus much of the stoichiometric oxygen required for conversion of H.sub.2 S to S is supplied in the form of SO.sub.2 by this pre-combustion step, instead of coming totally from the oxidized/sulfated solid sorbent. This can decrease the amount of sorbent required, as well as the frequency of regenerations, thus reducing process cost. The hot combustion gas also helps to heat the feed stream.
    Type: Grant
    Filed: January 7, 1998
    Date of Patent: February 29, 2000
    Assignee: Mobil Oil Corporation
    Inventors: John S. Buchanan, Khushrav E. Nariman
  • Patent number: 6017443
    Abstract: A method and reactor for catalytic hydroprocessing liquid hydrocarbon feedstock at elevated temperatures and pressures for producing a liquid hydrocarbon product involves introducing the feedstock into a reactor having upper and lower reaction zones, each reaction zone having a hydroprocessing catalyst bed therein, the feedstock being introduced at the top of the lower reaction zone for downward flow through and reaction within the catalyst bed therein; collecting a partially reacted liquid effluent from the lower reaction zone; pumping the partially reacted liquid effluent to and introducing it at the top of the upper reaction zone for downward flow through and reaction within the catalyst bed therein; introducing hydrogen gas at the top of the upper reaction zone for flow downwardly and sequentially through and over the catalyst beds in the upper and lower reaction zones in co-current contact with the liquid in the reaction zones, the hydrogen reacting with the liquid in the reaction zones whereby the liqui
    Type: Grant
    Filed: February 5, 1998
    Date of Patent: January 25, 2000
    Assignee: Mobil Oil Corporation
    Inventor: John S. Buchanan
  • Patent number: 5958359
    Abstract: This invention is directed to an improved process for conversion of H.sub.2 S to sulfur, using MOST(Mobil Offgas Sulfur Treatment) catalyst or sorbent. The sorbent is typically a magnesium-aluminate spinel, with oxidation promoters such as ceria and vanadia. H.sub.2 S from the feed gas is used to regenerate sulfated sorbent, simultaneously producing elemental sulfur which is then condensed out. The improvement involves recycling a portion of the effluent from a downstream burner to mix with the feed to the sorbent. Thus some of the stoichiometric oxygen required for conversion of H.sub.2 S to S is supplied in the form of SO.sub.2 by this pre-combustion step, instead of coming totally from the oxidized/sulfated solid sorbent. This can decrease the amount of sorbent required, as well as the frequency of regenerations, thus reducing process cost. The hot recycle gas also helps to heat the feed stream.
    Type: Grant
    Filed: December 17, 1997
    Date of Patent: September 28, 1999
    Assignee: Mobil Oil Corporation
    Inventors: John S. Buchanan, Khushrav E. Nariman