Patents by Inventor John S. Starzynski

John S. Starzynski has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9784758
    Abstract: A method of making a resonating beam accelerometer (RBA). In an example process, a proof mass device and resonators are created from a quartz material. A direct bond is formed between the proof mass and the resonators by applying a predefined amount of pressure at a predefined temperature for a predefined amount of time. One or more damping plates are created from a quartz material. A direct bond is formed between the damping plates and the proof mass device. The proof mass device is created by applying a predefined amount of pressure at pressure at temperature to two bases, two proof mass portions, and a flexure. The proof mass bases are on opposite sides of the flexure. The proof mass portions are on opposite sides of the flexure. A gap is present between the proof mass bases and the proof mass portions.
    Type: Grant
    Filed: April 20, 2015
    Date of Patent: October 10, 2017
    Assignee: Honeywell International Inc.
    Inventor: John S. Starzynski
  • Publication number: 20150268267
    Abstract: A method of making a resonating beam accelerometer (RBA). In an example process, a proof mass device and resonators are created from a quartz material. A direct bond is formed between the proof mass and the resonators by applying a predefined amount of pressure at a predefined temperature for a predefined amount of time. One or more damping plates are created from a quartz material. A direct bond is formed between the damping plates and the proof mass device. The proof mass device is created by applying a predefined amount of pressure at pressure at temperature to two bases, two proof mass portions, and a flexure. The proof mass bases are on opposite sides of the flexure. The proof mass portions are on opposite sides of the flexure. A gap is present between the proof mass bases and the proof mass portions.
    Type: Application
    Filed: April 20, 2015
    Publication date: September 24, 2015
    Inventor: John S. Starzynski
  • Patent number: 9009947
    Abstract: A method of making a resonating beam accelerometer (RBA). In an example process, a proof mass device and resonators are created from a quartz material. A direct bond is formed between the proof mass and the resonators by applying a predefined amount of pressure at a predefined temperature for a predefined amount of time. One or more damping plates are created from a quartz material. A direct bond is formed between the damping plates and the proof mass device. The proof mass device is created by applying a predefined amount of pressure at pressure at temperature to two bases, two proof mass portions, and a flexure. The proof mass bases are on opposite sides of the flexure. The proof mass portions are on opposite sides of the flexure. A gap is present between the proof mass bases and the proof mass portions.
    Type: Grant
    Filed: April 19, 2012
    Date of Patent: April 21, 2015
    Assignee: Honeywell International Inc.
    Inventor: John S. Starzynski
  • Patent number: 8485032
    Abstract: An accelerometer for reducing undesired attraction or repulsion forces between a proof mass and a cover. An exemplary accelerometer includes a proof mass, a base, a flexure that flexibly attaches the proof mass to the base, at least one double-ended tuning fork (DETF) attached at one end to the proof mass and at another end to the base, and a housing structure that encloses the proof mass within a cavity. A layer of graphene is located on at least a portion of the nonconductive surfaces within the housing structure. The nonconductive surfaces include a surface on the proof mass, the housing structure, the base, the flexure, or the DETF. The layer of graphene is attached to a heat sink and/or to an electrical charge dissipation component.
    Type: Grant
    Filed: March 14, 2011
    Date of Patent: July 16, 2013
    Assignee: Honeywell International Inc.
    Inventor: John S. Starzynski
  • Publication number: 20120234094
    Abstract: An accelerometer for reducing undesired attraction or repulsion forces between a proof mass and a cover. An exemplary accelerometer includes a proof mass, a base, a flexure that flexibly attaches the proof mass to the base, at least one double-ended tuning fork (DETF) attached at one end to the proof mass and at another end to the base, and a housing structure that encloses the proof mass within a cavity. A layer of graphene is located on at least a portion of the nonconductive surfaces within the housing structure. The nonconductive surfaces include a surface on the proof mass, the housing structure, the base, the flexure, or the DETF. The layer of graphene is attached to a heat sink and/or to an electrical charge dissipation component.
    Type: Application
    Filed: March 14, 2011
    Publication date: September 20, 2012
    Applicant: Honeywell International Inc.
    Inventor: John S. Starzynski
  • Publication number: 20120227495
    Abstract: A method of making a resonating beam accelerometer (RBA). In an example process, a proof mass device and resonators are created from a quartz material. A direct bond is formed between the proof mass and the resonators by applying a predefined amount of pressure at a predefined temperature for a predefined amount of time. One or more damping plates are created from a quartz material. A direct bond is formed between the damping plates and the proof mass device. The proof mass device is created by applying a predefined amount of pressure at pressure at temperature to two bases, two proof mass portions, and a flexure. The proof mass bases are on opposite sides of the flexure. The proof mass portions are on opposite sides of the flexure. A gap is present between the proof mass bases and the proof mass portions.
    Type: Application
    Filed: April 19, 2012
    Publication date: September 13, 2012
    Applicant: HONEYWELL INTERNATIONAL INC.
    Inventor: John S. Starzynski
  • Patent number: 8176617
    Abstract: A method of making a resonating beam accelerometer (RBA). In an example process, a proof mass device and resonators are created from a quartz material. A direct bond is formed between the proof mass and the resonators by applying a predefined amount of pressure at a predefined temperature for a predefined amount of time. One or more damping plates are created from a quartz material. A direct bond is formed between the damping plates and the proof mass device. The proof mass device is created by applying a predefined amount of pressure at pressure at temperature to two bases, two proof mass portions, and a flexure. The proof mass bases are on opposite sides of the flexure. The proof mass portions are on opposite sides of the flexure. A gap is present between the proof mass bases and the proof mass portions.
    Type: Grant
    Filed: March 31, 2010
    Date of Patent: May 15, 2012
    Assignee: Honeywell International Inc.
    Inventor: John S. Starzynski
  • Publication number: 20110239440
    Abstract: A method of making a resonating beam accelerometer (RBA). In an example process, a proof mass device and resonators are created from a quartz material. A direct bond is formed between the proof mass and the resonators by applying a predefined amount of pressure at a predefined temperature for a predefined amount of time. One or more damping plates are created from a quartz material. A direct bond is formed between the damping plates and the proof mass device. The proof mass device is created by applying a predefined amount of pressure at pressure at temperature to two bases, two proof mass portions, and a flexure. The proof mass bases are on opposite sides of the flexure. The proof mass portions are on opposite sides of the flexure. A gap is present between the proof mass bases and the proof mass portions.
    Type: Application
    Filed: March 31, 2010
    Publication date: October 6, 2011
    Applicant: HONEYWELL INTERNATIONAL INC.
    Inventor: John S. Starzynski
  • Publication number: 20090203156
    Abstract: Methods for measuring thickness of an epitaxial layer of a wafer. An example method applies photoresist over the epitaxial layer, and then portions of the photoresist within a sacrificial region of the wafer are removed. Next, the epitaxial layer is isotropically etched through the removed portions of the photoresist until a portion of the silicon handle layer is exposed. The remaining photoresist layer is removed. Then, the silicon handle layer is anisotropically etched to form a well. Profile information of the epitaxial layer and the etched handle layer generated. Next, the thickness of the epitaxial layer is determined based on the profile information. The acceptability of the epitaxial layer may be determined based on the determined thickness of the epitaxial layer. If the epi layer is acceptable, then the geometry of devices that are to be etched into the epitaxial layer are determined based on the determined thickness.
    Type: Application
    Filed: February 12, 2008
    Publication date: August 13, 2009
    Applicant: HONEYWELL INTERNATIONAL INC.
    Inventor: John S. Starzynski
  • Publication number: 20090111271
    Abstract: Methods for isotropically etching a monocrystalline silicon wafer. An example method includes applying a layer of material at least one of onto a first side or into a first side of the monocrystalline silicon wafer and isotropically etching a non-linear pit into the monocrystalline silicon wafer using an anisotropic etchant. The applied layer of material has a faster etch rate than the monocrystalline silicon wafer.
    Type: Application
    Filed: October 26, 2007
    Publication date: April 30, 2009
    Applicant: HONEYWELL INTERNATIONAL INC.
    Inventor: John S. Starzynski
  • Patent number: 6486527
    Abstract: According to the present invention, after manufacture of a disconnect fuse circuit, windows are opened in the insulating film overlying the second interconnect layer at all possible disconnection points, the disconnection points preferably being an exposure window that is aligned over a disconnect fuse circuit that includes a via that electrically connects electrical conductors disposed on different respective layers. This insulating film may consist of one or more layers of one or more materials, but preferentially consists of a single layer of silicon oxide. The wafer is then stored for later configuration. When the wafer is to be configured, a non-precision mask is manufactured. The wafer is coated with photoresist and patterned using the mask to produce disconnection holes in the photoresist at the desired disconnection points.
    Type: Grant
    Filed: June 25, 1999
    Date of Patent: November 26, 2002
    Inventors: John MacPherson, Jayaraman Iyer, Alan H. Huggins, John S. Starzynski, Keith R. Erb, Dennis L. Lantz, Jr.