Patents by Inventor John S. Wang

John S. Wang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11929860
    Abstract: A wireless transmit/receiver unit (WTRU) is configured to receive sounding reference signal (SRS) configuration information. The SRS configuration information indicates a plurality of SRS configurations and indicates antenna transmission information. The WTRU is configured to receive SRS trigger information. The SRS trigger information comprises an indication to trigger transmission of one of the plurality of SRS configurations. The WTRU is configured to transmit a plurality of SRS associated with the indication in the SRS trigger information and based on the SRS configuration information. At least a first SRS of the plurality of SRS is transmitted over a first antenna port in a first symbol and at least a second SRS of the plurality of SRS is transmitted over a second antenna port in a second symbol.
    Type: Grant
    Filed: August 15, 2022
    Date of Patent: March 12, 2024
    Assignee: InterDigital Patent Holdings, Inc.
    Inventors: Janet A. Stern-Berkowitz, Chang-Soo Koo, Peter S. Wang, Sung-Hyuk Shin, John W. Haim, Stephen G. Dick, Mihaela C. Beluri
  • Patent number: 10593988
    Abstract: An electrochemical cell is formed. The cell includes a non-lithium negative electrode in contact with a lithium ion permeable negative electrode current collector, and a positive electrode disposed in contact with a lithium ion permeable positive electrode current collector. The non-lithium negative electrode and the positive electrode are lithium ion permeable. The cell also has a lithium source electrode including lithium ions. A respective microporous polymer separator is disposed between the lithium source electrode and each of the negative and positive electrodes; or a first separator is disposed between the lithium source electrode and one of the negative and positive electrodes, and a second separator is disposed between the negative and positive electrodes. An electrolyte is introduced into the electrochemical cell.
    Type: Grant
    Filed: May 28, 2015
    Date of Patent: March 17, 2020
    Assignee: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Xingcheng Xiao, John S. Wang
  • Patent number: 10291754
    Abstract: Methods, systems, and apparatuses, including electrical circuitry, are described for auto-negotiation. Active cables, active backplanes, and line cards may include one or more instances of electrical circuitry and/or integrated circuits that intercept advertisements of standard auto-negotiation protocol signaling from an initiating device for establishment of communication links with a receiving device. Auto negotiation information in the intercepted signaling may be translated and encoded into signaling in accordance with the capabilities of the receiving device. Active cables and active backplanes may also include one or more connection components between instances of electrical circuitry and/or integrated circuits to provide high-speed transmission of data packets encapsulating the auto-negotiation information in a format that differs from the standard auto-negotiation protocol.
    Type: Grant
    Filed: July 21, 2015
    Date of Patent: May 14, 2019
    Assignee: Avago Technologies International Sales Pte. Limited
    Inventors: Gavin D. Parnaby, John S. Wang, Michael Le, Chung-Jue Chen
  • Publication number: 20160381190
    Abstract: Methods, systems, and apparatuses, including electrical circuitry, are described for auto-negotiation. Active cables, active backplanes, and line cards may include one or more instances of electrical circuitry and/or integrated circuits that intercept advertisements of standard auto-negotiation protocol signaling from an initiating device for establishment of communication links with a receiving device. Auto negotiation information in the intercepted signaling may be translated and encoded into signaling in accordance with the capabilities of the receiving device. Active cables and active backplanes may also include one or more connection components between instances of electrical circuitry and/or integrated circuits to provide high-speed transmission of data packets encapsulating the auto-negotiation information in a format that differs from the standard auto-negotiation protocol.
    Type: Application
    Filed: July 21, 2015
    Publication date: December 29, 2016
    Inventors: Gavin D. Parnaby, John S. Wang, Michael Le, Chung-Jue Chen
  • Patent number: 9531004
    Abstract: An electroactive material for use in an electrochemical cell, like a lithium ion battery, is provided. The electroactive material comprises a multifunctional hybrid protective coating system formed over an electroactive material. The coating system includes a first oxide-based coating disposed on one or more surfaces of the electroactive material, followed by a second coating deposited via a non-aqueous process. The second coating may be a fluoride-based, nitride-based, or carbide-based coating. The first and second coatings may be applied by atomic layer deposition (ALD) to form conformal ultrathin layers over the electroactive materials. Such a multifunctional hybrid protective coating system can suppress formation of gases within the electrochemical cell and also minimize formation of solid electrolyte interface (SEI) layers on the electrode to improve battery performance. Methods for making such materials and using such materials in electrochemical cells are likewise provided.
    Type: Grant
    Filed: December 23, 2013
    Date of Patent: December 27, 2016
    Assignee: GM Global Technology Operations LLC
    Inventors: Xingcheng Xiao, Mark W. Verbrugge, John S. Wang
  • Patent number: 9270291
    Abstract: Methods and apparatuses are described for timing skew mitigation in time-interleaved ADCs (TI-ADCs) that may be performed for any receive signal without any special signals during blind initialization, which may be followed by background calibration. The same gain/skew calibration metrics may be applied to baud sampled and oversampled systems, including wideband receivers and regardless of any modulation, by applying a timing or frequency offset to non-stationary sampled signals during initial training. Skew mitigation is low latency, low power, low area, noise tolerant and scalable. Digital estimation may be implemented with accumulators and multipliers while analog calibration may be implemented with adjustable delays. DC and gain offsets may be calibrated before skew calibration. The slope of the correlation function between adjacent samples may be used to move a timing skew estimate stochastically at a low adaptive rate until the skew algorithm converges.
    Type: Grant
    Filed: March 18, 2015
    Date of Patent: February 23, 2016
    Assignee: Broadcom Corporation
    Inventors: Gavin D. Parnaby, Vasudevan Parthasarathy, John S. Wang
  • Patent number: 9142830
    Abstract: A composite of silicon and tin is prepared as a negative electrode composition with increased lithium insertion capacity and durability for use with a metal current collector in cells of a lithium-ion battery. This electrode material is formed such that the silicon is present as a distinct amorphous phase in a matrix phase of crystalline tin. While the tin phase provides electron conductivity, both phases accommodate the insertion and extraction of lithium in the operation of the cell and both phases interact in minimizing mechanical damage to the material as the cell experiences repeated charge and discharge cycles. In general, roughly equal atomic proportions of the tin and silicon are used in forming the phase separated composite electrode material.
    Type: Grant
    Filed: September 16, 2011
    Date of Patent: September 22, 2015
    Assignee: GM Global Technology Operations LLC
    Inventors: Xingcheng Xiao, Anil K. Sachdev, Mark W. Verbrugge, Ping Liu, John S Wang
  • Publication number: 20150263379
    Abstract: An electrochemical cell is formed. The cell includes a non-lithium negative electrode in contact with a lithium ion permeable negative electrode current collector, and a positive electrode disposed in contact with a lithium ion permeable positive electrode current collector. The non-lithium negative electrode and the positive electrode are lithium ion permeable. The cell also has a lithium source electrode including lithium ions. A respective microporous polymer separator is disposed between the lithium source electrode and each of the negative and positive electrodes; or a first separator is disposed between the lithium source electrode and one of the negative and positive electrodes, and a second separator is disposed between the negative and positive electrodes. An electrolyte is introduced into the electrochemical cell.
    Type: Application
    Filed: May 28, 2015
    Publication date: September 17, 2015
    Inventors: Xingcheng Xiao, John S. Wang
  • Patent number: 9091735
    Abstract: A method of determining and predicting a state of a rechargeable battery device in real time involves measuring a current and a voltage of the rechargeable battery in real time, inputting the measured current and voltage into an algorithm, and applying the algorithm to determine the state of the rechargeable battery. The algorithm includes a first mathematical model based on a direct solution of at least one differential equation characterizing an equivalent RC circuit of the battery as a function of time. The first model generates a plurality of parameters that are usable to determine the state of the battery. The algorithm further includes a second mathematical model configured to regress the parameters over time, and a third mathematical model configured to estimate the state of the battery.
    Type: Grant
    Filed: October 26, 2010
    Date of Patent: July 28, 2015
    Assignee: GM Global Technology Operations LLC
    Inventors: Shuoqin Wang, Mark W. Verbrugge, John S. Wang, Ping Liu
  • Publication number: 20150180023
    Abstract: An electroactive material for use in an electrochemical cell, like a lithium ion battery, is provided. The electroactive material comprises a multifunctional hybrid protective coating system formed over an electroactive material. The coating system includes a first oxide-based coating disposed on one or more surfaces of the electroactive material, followed by a second coating deposited via a non-aqueous process. The second coating may be a fluoride-based, nitride-based, or carbide-based coating. The first and second coatings may be applied by atomic layer deposition (ALD) to form conformal ultrathin layers over the electroactive materials. Such a multifunctional hybrid protective coating system can suppress formation of gases within the electrochemical cell and also minimize formation of solid electrolyte interface (SEI) layers on the electrode to improve battery performance. Methods for making such materials and using such materials in electrochemical cells are likewise provided.
    Type: Application
    Filed: December 23, 2013
    Publication date: June 25, 2015
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Xingcheng XIAO, Mark W. VERBRUGGE, John S. WANG
  • Patent number: 9059451
    Abstract: An electroactive material for use in an electrochemical cell, like a lithium-ion battery, is provided. The electroactive material comprises lithium titanate oxide (LTO) and has a surface coating with a thickness of less than or equal to about 30 nm that suppresses formation of gases within the electrochemical cell. Methods for making such materials and using such materials to suppress gas formation in electrochemical cells are likewise provided.
    Type: Grant
    Filed: October 18, 2012
    Date of Patent: June 16, 2015
    Assignee: GM Global Technology Operations LLC
    Inventors: Xingcheng Xiao, Mark W. Verbrugge, John S. Wang, Ping Liu
  • Patent number: 9005811
    Abstract: A composite of silicon and tin is prepared as a negative electrode composition with increased lithium insertion capacity and durability for use with a metal current collector in cells of a lithium-ion battery or a lithium-sulfur battery. This negative electrode material is formed such that the silicon is present as a distinct amorphous phase in a matrix phase of crystalline tin. While the tin phase provides electron conductivity, both phases accommodate the insertion and extraction of lithium in the operation of the cell and both phases interact in minimizing mechanical damage to the material as the cell experiences repeated charge and discharge cycles. In general, roughly equal atomic proportions of the tin and silicon are used in forming the phase separated composite electrode material.
    Type: Grant
    Filed: December 13, 2013
    Date of Patent: April 14, 2015
    Assignee: GM Global Technology Operations LLC
    Inventors: Xingcheng Xiao, Anil K. Sachdev, Mark W. Verbrugge, Ping Liu, John S. Wang
  • Patent number: 8774262
    Abstract: Methods, apparatuses, and systems are presented for performing adaptive equalization involving receiving a signal originating from a channel associated with inter-symbol interference, filtering the signal using a filter having a plurality of adjustable tap weights to produce a filtered signal, and adaptively updating each of the plurality of adjustable tap weights to a new value to reduce effects of inter-symbol interference, wherein each of the plurality of adjustable tap weights is adaptively updated to take into account a constraint relating to a measure of error in the filtered signal and a constraint relating to group delay associated with the filter. Each of the plurality of adjustable tap weights may be adaptively updated to drive group delay associated with the filter toward a target group delay.
    Type: Grant
    Filed: March 25, 2011
    Date of Patent: July 8, 2014
    Assignee: Vitesse Semiconductor Corporation
    Inventors: Sudeep Bhoja, John S. Wang, Hai Tao
  • Publication number: 20140113197
    Abstract: An electroactive material for use in an electrochemical cell, like a lithium-ion battery, is provided. The electroactive material comprises lithium titanate oxide (LTO) and has a surface coating with a thickness of less than or equal to about 30 nm that suppresses formation of gases within the electrochemical cell. Methods for making such materials and using such materials to suppress gas formation in electrochemical cells are likewise provided.
    Type: Application
    Filed: October 18, 2012
    Publication date: April 24, 2014
    Inventors: Xingcheng Xiao, Mark W. Verbrugge, John S. Wang, Ping Liu
  • Publication number: 20140106220
    Abstract: A composite of silicon and tin is prepared as a negative electrode composition with increased lithium insertion capacity and durability for use with a metal current collector in cells of a lithium-ion battery or a lithium-sulfur battery. This negative electrode material is formed such that the silicon is present as a distinct amorphous phase in a matrix phase of crystalline tin. While the tin phase provides electron conductivity, both phases accommodate the insertion and extraction of lithium in the operation of the cell and both phases interact in minimizing mechanical damage to the material as the cell experiences repeated charge and discharge cycles. In general, roughly equal atomic proportions of the tin and silicon are used in forming the phase separated composite electrode material.
    Type: Application
    Filed: December 13, 2013
    Publication date: April 17, 2014
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Xingcheng Xiao, Anil K. Sachdev, Mark W. Verbrugge, Ping Liu, John S. Wang
  • Patent number: 8680815
    Abstract: A method for monitoring a lithium-ion battery cell includes monitoring a battery cell voltage and a corresponding charge capacity of the battery cell during an electric power event which may include either an electric power charge event or an electric power discharge event. A measured charge-capacity-derivative is determined by differentiating the charge capacity in relation to the corresponding battery cell voltage during the electric power event. The measured charge-capacity-derivative is compared with a preferred anode charge-capacity-derivative of an anode charge curve (for electric power discharge events) or an anode discharge curve (for electric power charge events), and with a preferred cathode charge-capacity-derivative of a cathode charge curve (for electric power charge events) or a cathode discharge charge curve (for electric power discharge events).
    Type: Grant
    Filed: November 1, 2010
    Date of Patent: March 25, 2014
    Assignee: GM Global Technology Operations LLC
    Inventors: John S. Wang, Ping Liu, Shuoqin Wang, Souren Soukiazian, Mark W. Verbrugge
  • Patent number: 8531158
    Abstract: A method for monitoring a lithium-ion battery cell includes monitoring a battery cell voltage and a corresponding state of charge of the battery cell during an electric power event which may include either an electric power charge event or an electric power discharge event. A measured potential-derivative is determined by differentiating the battery cell voltage in relation to the corresponding state of charge of the battery during the electric power event. The measured potential-derivative is compared with a preferred anode potential-derivative of an anode charge curve (for electric power discharge events) or an anode discharge curve (for electric power charge events), and with a preferred cathode potential-derivative of a cathode charge curve (for electric power charge events) or a cathode discharge charge curve (for electric power discharge events).
    Type: Grant
    Filed: November 1, 2010
    Date of Patent: September 10, 2013
    Assignee: GM Global Technology Operations LLC
    Inventors: John S. Wang, Ping Liu, Shuoqin Wang, Souren Soukiazian, Mark W. Verbrugge
  • Publication number: 20130071736
    Abstract: A composite of silicon and tin is prepared as a negative electrode composition with increased lithium insertion capacity and durability for use with a metal current collector in cells of a lithium-ion battery. This electrode material is formed such that the silicon is present as a distinct amorphous phase in a matrix phase of crystalline tin. While the tin phase provides electron conductivity, both phases accommodate the insertion and extraction of lithium in the operation of the cell and both phases interact in minimizing mechanical damage to the material as the cell experiences repeated charge and discharge cycles. In general, roughly equal atomic proportions of the tin and silicon are used in forming the phase separated composite electrode material.
    Type: Application
    Filed: September 16, 2011
    Publication date: March 21, 2013
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Xingcheng Xiao, Anil K. Sachdev, Mark W. Verbrugge, Ping Liu, John S. Wang
  • Patent number: RE49856
    Abstract: A golf club head including a club face defined by a toe end, a heel end, a top rail and a sole. The golf club head including a plurality of grooves disposed on the club face between the top rail and the sole. Each groove extends between the toe end and the heel end. Depths of the grooves vary in a direction extending between the top rail and the sole and in a direction extending between the heel end and the toe end. Widths of each of the plurality of grooves vary in a direction extending between the heel end and the toe end.
    Type: Grant
    Filed: August 5, 2020
    Date of Patent: March 5, 2024
    Assignee: Karsten Manufacturing Corporation
    Inventors: Anthony D. Serrano, Paul D. Wood, Bradley D. Schweigert, Calvin S. Wang, John A. Solheim
  • Patent number: RE49857
    Abstract: Embodiments of grooves of golf club heads and methods to manufacture grooves of golf club heads are generally described herein. Other embodiments may be described and claimed.
    Type: Grant
    Filed: August 5, 2020
    Date of Patent: March 5, 2024
    Assignee: Karsten Manufacturing Corporation
    Inventors: Anthony D. Serrano, Paul D. Wood, Bradley D. Schweigert, Calvin S. Wang, John A. Solheim