Patents by Inventor John Shigeura

John Shigeura has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20030113935
    Abstract: An analytical cell including a lightguide with a plurality of conduits filled with a migration medium. The medium, the lightguide and a surrounding medium have refractive indices selected such that light entering the lightguide is internally reflected within the lightguide to provide substantially uniform illumination of the conduits.
    Type: Application
    Filed: December 19, 2001
    Publication date: June 19, 2003
    Inventors: Larry J. Carson, Joel R. Dufresne, Patrick R. Fleming, Michael C. Lea, Nicholas A. Lee, John Shigeura
  • Publication number: 20030062265
    Abstract: A sample handling system in a multi-channel capillary electrophoresis apparatus is disclosed. The sample handling system includes a work surface for supporting a plurality of samples located at a plurality of work surface coordinates and a sample loading assembly comprising a plurality of loading wells. At least one of the loading wells includes a capillary fixedly positioned therein. The system further includes a programmable sample transfer device for automatically transferring a sample from a work surface coordinate to a loading well. The invention further includes methods for using the sample handling system.
    Type: Application
    Filed: November 4, 2002
    Publication date: April 3, 2003
    Applicant: PE Corporation (NY)
    Inventors: Howard Gregg King, John Shigeura, Eric S. Nordman, Sean Matthew Desmond
  • Publication number: 20030030804
    Abstract: An apparatus for detecting analytes in a sample is provided. The apparatus includes: one or more channels having a detection zone; one or more irradiation sources disposed for irradiating the detection zone with non-coherent radiation; a detector array disposed for collecting light signals emitted from markers in the detection zone excited by the radiation, the detector array having an output; and a system coupled to the detector array for effecting time delay integration of the charges on the detector array corresponding to the light signals by accumulating the charges before reading the charges at the output of the detector array. Other apparatus and methods for detecting analytes in a sample are also provided.
    Type: Application
    Filed: July 25, 2002
    Publication date: February 13, 2003
    Inventors: Eric S. Nordman, Richard T. Reel, John Shigeura
  • Publication number: 20020076718
    Abstract: Apparatus and methods for separating different polynucleotide populations in a mixture are provided, wherein different polynucleotides or polynucleotide populations are captured on different solid support. After hybridization, polynucleotides are selectively released from a selected support by altering a physical property of that support. The released polynucleotides can be eluted from a common flow path and isolated.
    Type: Application
    Filed: July 17, 2001
    Publication date: June 20, 2002
    Inventors: John Shigeura, Jer-Kang Chen
  • Patent number: 6387236
    Abstract: A multi-channel capillary electrophoresis apparatus is disclosed. The apparatus includes a capillary array assembly comprising a plurality of capillaries, each capillary having a capillary outlet, and an outlet support for supporting the capillary outlets. The apparatus further includes a cuvette defining a receiving slot, a gap region, and a detection zone, where the receiving slot is adapted to removably receive the outlet support, and wherein when the outlet support is inserted into the receiving slot, the capillary outlets are positioned in the gap region in proximity to the detection zone, and a flow channel is formed by the outlet support and the receiving slot such that the flow channel is in fluid communication with the gap region. In addition, the apparatus includes a front plumbing block in fluid communication with the flow channel for supplying a fluid flow through the gap region sufficient to transport material downstream from the capillary outlets to the detection zone.
    Type: Grant
    Filed: March 13, 2001
    Date of Patent: May 14, 2002
    Assignee: PE Corporation (NY)
    Inventors: Eric S. Nordman, John Shigeura, Albert L. Carrillo, David M. Demorest, Philip J. Wunderle
  • Publication number: 20020029972
    Abstract: A multi-channel capillary electrophoresis apparatus is disclosed. The apparatus includes a capillary array assembly comprising a plurality of capillaries, each capillary having a capillary outlet, and an outlet support for supporting the capillary outlets. The apparatus further includes a cuvette defining a receiving slot, a gap region and a detection zone, where the receiving, slot is adapted to removably receive the outlet support, and wherein when the outlet support is inserted into the receiving slot, the capillary outlets are positioned in the gap region in proximity to the detection zone, and a flow channel is formed by the outlet support and the receiving slot such that the flow channel is in fluid communication with the gap region. In addition, the apparatus includes a front plumbing block in fluid communication with the flow channel for supplying a fluid flow through the gap region sufficient to transport material downstream the capillary outlets to the detection zone.
    Type: Application
    Filed: September 4, 2001
    Publication date: March 14, 2002
    Applicant: The Perkin-Elmer Corporation
    Inventors: Eric S. Nordman, John Shigeura, Albert L. Carrillo, David M. Demorest, Philip J. Wunderle
  • Publication number: 20010019019
    Abstract: A multi-channel capillary electrophoresis apparatus is disclosed. The apparatus includes a capillary array assembly comprising a plurality of capillaries, each capillary having a capillary outlet, and an outlet support for supporting the capillary outlets. The apparatus further includes a cuvette defining a receiving slot, a gap region, and a detection zone, where the receiving slot is adapted to removably receive the outlet support, and wherein when the outlet support is inserted into the receiving slot, the capillary outlets are positioned in the gap region in proximity to the detection zone, and a flow channel is formed by the outlet support and the receiving slot such that the flow channel is in fluid communication with the gap region. In addition, the apparatus includes a front plumbing block in fluid communication with the flow channel for supplying a fluid flow through the gap region sufficient to transport material downstream from the capillary outlets to the detection zone.
    Type: Application
    Filed: March 13, 2001
    Publication date: September 6, 2001
    Applicant: The Perkin-Elmer Corporation
    Inventors: Eric S. Nordman, John Shigeura, Albert L. Carrillo, David M. Demorest, Philip J. Wunderle
  • Patent number: 6231739
    Abstract: A multi-channel capillary electrophoresis apparatus is disclosed. The apparatus includes a capillary array assembly comprising a plurality of capillaries, each capillary having a capillary outlet, and an outlet support for supporting the capillary outlets. The apparatus further includes a cuvette defining a receiving slot, a gap region, and a detection zone, where the receiving slot is adapted to removably receive the outlet support, and wherein when the outlet support is inserted into the receiving slot, the capillary outlets are positioned in the gap region in proximity to the detection zone, and a flow channel is formed by the outlet support and the receiving slot such that the flow channel is in fluid communication with the gap region. In addition, the apparatus includes a front plumbing block in fluid communication with the flow channel for supplying a fluid flow through the gap region sufficient to transport material downstream from the capillary outlets to the detection zone.
    Type: Grant
    Filed: July 21, 2000
    Date of Patent: May 15, 2001
    Assignee: The Perkin-Elmer Corporation
    Inventors: Eric S. Nordman, John Shigeura, Albert L. Carrillo, David M. Demorest, Philip J. Wunderle
  • Patent number: 6162341
    Abstract: A multi-channel capillary electrophoresis apparatus is disclosed. The apparatus includes a capillary array assembly comprising a plurality of capillaries, each capillary having a capillary outlet, and an outlet support for supporting the capillary outlets. The apparatus further includes a cuvette defining a receiving slot, a gap region, and a detection zone, where the receiving slot is adapted to removably receive the outlet support, and wherein when the outlet support is inserted into the receiving slot, the capillary outlets are positioned in the gap region in proximity to the detection zone, and a flow channel is formed by the outlet support and the receiving slot such that the flow channel is in fluid communication with the gap region. In addition, the apparatus includes a front plumbing block in fluid communication with the flow channel for supplying a fluid flow through the gap region sufficient to transport material downstream from the capillary outlets to the detection zone.
    Type: Grant
    Filed: September 11, 1998
    Date of Patent: December 19, 2000
    Assignee: The Perkin-Elmer Corporation
    Inventors: Eric S. Nordman, John Shigeura, Albert L. Carrillo, David M. Demorest, Philip J. Wunderle
  • Patent number: 6132582
    Abstract: A sample handling system in a multi-channel capillary electrophoresis apparatus is disclosed. The sample handling system includes a work surface for supporting a plurality of samples located at a plurality of work surface coordinates and a sample loading assembly comprising a plurality of loading wells. At least one of the loading wells includes a capillary fixedly positioned therein. The system further includes a programmable sample transfer device for automatically transferring a sample from a work surface coordinate to a loading well. The invention further includes methods for using the sample handling system.
    Type: Grant
    Filed: September 14, 1998
    Date of Patent: October 17, 2000
    Assignee: The Perkin-Elmer Corporation
    Inventors: Howard Gregg King, John Shigeura, Eric S. Nordman, Sean Matthew Desmond
  • Patent number: 6015674
    Abstract: An apparatus is provided which includes a sample holder for holding a reaction chamber which includes an optical interface, a fiber optic cable for delivering an excitation beam to a sample housed within the reaction chamber and for receiving light emitted by the sample, and a lens co-axially disposed with the fiber optic cable and positioned outside the reaction chamber for focusing the excitation beam through the optical interface and within a volume of the sample and for collecting and transmitting to the fiber optic cable light emitted within the volume of the sample.
    Type: Grant
    Filed: March 20, 1998
    Date of Patent: January 18, 2000
    Assignee: Perkin-Elmer Corporation Applied Biosystems Division
    Inventors: Timothy M. Woudenberg, Kevin S. Bodner, Charles R. Connell, John Shigeura, David H. Tracy, Eugene F. Young
  • Patent number: 5942432
    Abstract: Apparatus are disclosed that thermally cycles samples between at least two temperatures. These apparatus operate by impinging fluid jets onto the outer walls of a sample containing region. Because the impinging fluid jets provide a high heat transfer coefficient between the jet and the sample containing region, the sample containing regions are uniformly cycled between the two temperatures. The heat exchange rate between the jets and the sample regions are substantially uniform.
    Type: Grant
    Filed: October 7, 1997
    Date of Patent: August 24, 1999
    Assignee: The Perkin-Elmer Corporation
    Inventors: Douglas H. Smith, John Shigeura, Timothy M. Woudenberg
  • Patent number: 5928907
    Abstract: A system is provided for carrying out real time fluorescence-based measurements of nucleic acid amplification products. In a preferred embodiment of the invention, an excitation beam is focused into a reaction mixture through a surface, the reaction mixture containing (i) a first fluorescent indicator capable of generating a first fluorescent signal whose intensity is proportional to the amount of an amplification product in the volume of the reaction mixture illuminated by the excitation beam and (ii) a second fluorescent indicator homogeneously distributed throughout the reaction mixture capable of generating a second fluorescent signal proportional to the volume of reaction mixture illuminated by the excitation beam. Preferably, the excitation beam is focused into the reaction mixture by a lens through a portion of a wall of a closed reaction chamber containing the reaction mixture.
    Type: Grant
    Filed: December 2, 1996
    Date of Patent: July 27, 1999
    Assignee: The Perkin-Elmer Corporation., Applied Biosystems Division
    Inventors: Timothy M. Woudenberg, Kevin S. Bodner, Charles R. Connell, Alan M. Ganz, Lincoln J. McBride, Paul G. Saviano, John Shigeura, David H. Tracy, Eugene F. Young, Linda G. Lee
  • Patent number: 5443791
    Abstract: A liquid-handling instrument has a worksurface with registration for modular stations to support containers of liquid, pipette apparatus with a pipette tip coupled to a sensing circuit, a robotic translation system for moving the pipette tip, and a control system with an iconic user interface for programming and editing. A gauge block registered on the worksurface provides for calibration using the sensing tip, and register cavities on the worksurface provide for modular stations. There is a wash station fop the pipette tip on the worksurface. An automated laboratory based on the liquid-handling system has heating and cooling and a sealable incubation station as well as a magnetic separation station. Methods are disclosed using the apparatus to convey droplets of liquid, to aspirate with minimum tip contamination, to mix liquids in containers, and to validate the worksurface.
    Type: Grant
    Filed: August 7, 1992
    Date of Patent: August 22, 1995
    Assignee: Perkin Elmer - Applied Biosystems Division
    Inventors: G. Richard Cathcart, Thomas Brennan-Marquez, John A. Bridgham, George S. Golda, Harry A. Guiremand, Marianne Hane, Louis B. Hoff, Eric Lachenmeier, Melvyn N. Kronick, Douglas H. Keith, Paul E. Mayrand, Michael L. Metzker, William J. Mordan, Lincoln J. McBride, John Shigeura, Chen-Hanson Ting, Norman M. Whiteley
  • Patent number: 5338426
    Abstract: An electrophoresis apparatus has a gel film cast between two plates and buffer reservoirs at each end of the film with electrodes connectable to an external power supply for providing electromotive force for driving electrophoresis. The reservoirs are configured to wet the ends of the gel film and submerge the electrodes with the apparatus positioned either horizontally or vertically, so gel films can be cast horizontally with sample wells formed in the end of the gel between the plates. Samples may be added to the wells and run into the gel with the apparatus positioned vertically, and the analytical separation may be performed with the apparatus again positioned horizontally, such as in an automatic scanning apparatus.
    Type: Grant
    Filed: August 28, 1992
    Date of Patent: August 16, 1994
    Assignee: Applied Biosystems, Inc.
    Inventors: John Shigeura, John A. Bridgham, Louis B. Hoff, P. Eric Mayrand