Patents by Inventor John Smee

John Smee has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7027503
    Abstract: Techniques for selecting either a DFE or an LE for use to equalize a received signal, and for quickly and efficiently determining the coefficients for the selected equalizer. In an embodiment, a method is provided whereby the DFE is initially adapted based on the received signal and a particular adaptive algorithm (e.g., the LMS algorithm) for an initial time period. A quality metric is then determined for an output of the DFE. The DFE is selected for use if the quality metric is better than a threshold value, and the LE is selected otherwise. If the LE is selected, then the initial values for the coefficients of the LE may be derived based on the coefficients of a feed-forward filter and a feedback filter for the DFE, and the LE coefficients may further be adapted for an additional time period prior to its use to equalize the received signal.
    Type: Grant
    Filed: June 4, 2002
    Date of Patent: April 11, 2006
    Assignee: Qualcomm Incorporated
    Inventors: John Smee, Ivan Jesus Fernandez-Corbaton, Srikant Jayaraman
  • Publication number: 20060072533
    Abstract: Methods and apparatuses to selectively assign interlace preference factors to a plurality of user terminals to use a plurality of interlaces. These methods and apparatuses may improve capacity compared to a system that allows each user terminal to transmit data in every interlace.
    Type: Application
    Filed: October 6, 2004
    Publication date: April 6, 2006
    Inventors: John Smee, Jilei Hou, Kiran Kiran, Naga Bhushan, Rashid Attar
  • Publication number: 20060056496
    Abstract: In a method for achieving higher S/N, one or more signals are received and processed to provide one or more streams of samples. In a first processing scheme, the sample stream(s) are equalized within an equalizer to generate symbol estimates, which may be subsequently processed (e.g., despread and decovered) to provide a first stream of recovered symbols. Each sample stream is filtered with a set of coefficients and may be scaled with a scaling factor. The scaled samples for all streams are then combined to generate the symbol estimates. The sample stream(s) may also be processed by a second processing scheme with one or more rake receivers to provide a second stream of recovered symbols. The signal quality for each processing scheme can be estimated and used to select either the first or second processing scheme.
    Type: Application
    Filed: November 3, 2005
    Publication date: March 16, 2006
    Inventors: John Smee, Ahmad Jalali
  • Publication number: 20060030352
    Abstract: Systems and techniques for wireless communications are disclosed. The systems and techniques include the generation of a signal, the setting of an average transmit power of the signal transmission as a function of a first threshold relating to out-of-band emissions, the clipping of the signal as a function of a second threshold relating to peak transmit power, and the transmission of the signal over a wireless medium.
    Type: Application
    Filed: September 15, 2004
    Publication date: February 9, 2006
    Inventors: Kiran Kiran, John Smee
  • Patent number: 6987797
    Abstract: A non-parametric matched filter receiver that includes a digital (e.g., FIR) filter and a channel estimator. The channel estimator (1) determines the timing to center the digital filter, (2) obtains the characteristics of the noise in received samples, (3) estimates the system response for the samples using a best linear unbiased (BLU) estimator, a correlating estimator, or some other type of estimator, and (4) derives a set of coefficients for the digital filter based on the estimated system response and the determined noise characteristics. The correlating estimator correlates the samples with their known values to obtain the estimated system response. The BLU estimator pre-processes the samples to whiten the noise, correlates the whitened samples with their known values, and applies a correction factor to obtain the estimated system response. The digital filter then filters the samples with the set of coefficients to provide demodulated symbols.
    Type: Grant
    Filed: July 26, 2002
    Date of Patent: January 17, 2006
    Assignee: QUALCOMM Incorporated
    Inventors: Ivan Jesus Fernandez-Corbaton, John Smee, Srikant Jayaraman
  • Publication number: 20060007895
    Abstract: Methods and systems for estimating and canceling pilot interference in a wireless (e.g., CDMA) communication system. In one method, a received signal comprised of a number of signal instances, each including a pilot, is initially processed to provide data samples. Each signal instance's pilot interference may be estimated by despreading the data samples with a spreading sequence for the signal instance, channelizing the despread data to provide pilot symbols, filtering the pilot symbols to estimate the channel response of the signal instance, and multiplying the estimated channel response with the spreading sequence. The pilot interference estimates due to a plurality of interfering multipaths are accumulated to derive the total pilot interference, which is subtracted from the data samples to provide pilot-canceled data samples. These samples are then processed to derive demodulated data for each of at least one (desired) signal instance in the received signal.
    Type: Application
    Filed: June 30, 2005
    Publication date: January 12, 2006
    Inventors: Alessandro Coralli, Henry Pfister, Jilei Hou, John Smee, Roberto Padovani, Brian Butler, Jeffrey Levin, Thomas Wilborn, Paul Bender
  • Publication number: 20050111599
    Abstract: An uplink channel response matrix is obtained for each terminal and decomposed to obtain a steering vector used by the terminal to transmit on the uplink. An “effective” uplink channel response vector is formed for each terminal based on its steering vector and its channel response matrix. Multiple sets of terminals are evaluated based on their effective channel response vectors to determine the best set (e.g., with highest overall throughput) for uplink transmission. Each selected terminal performs spatial processing on its data symbol stream with its steering vector and transmits its spatially processed data symbol stream to an access point. The multiple selected terminals simultaneously transmit their data symbol streams via their respective MIMO channels to the access point. The access point performs receiver spatial processing on its received symbol streams in accordance with a receiver spatial processing technique to recover the data symbol streams transmitted by the selected terminals.
    Type: Application
    Filed: November 21, 2003
    Publication date: May 26, 2005
    Inventors: J. Walton, John Ketchum, John Smee, Mark Wallace, Steven Howard
  • Publication number: 20050083888
    Abstract: A method and apparatus for performing handoff in a wireless communication system with multi-carrier modulation (MCM) for a forward link and CDMA for a reverse link. In one embodiment, a method of performing handoff on the forward link for a terminal is provided in which signal quality of pilots received by the terminal from a plurality of base stations in the system is determined. A particular base station for subsequent data transmission on the forward link to the terminal is selected based on the signal quality determined for the plurality of base stations. A request to be handed off to the particular base station is initiated if the particular base station is different than a currently selected base station.
    Type: Application
    Filed: December 22, 2003
    Publication date: April 21, 2005
    Inventors: John Smee, Jay Walton, Durga Malladi, Serge Willenegger
  • Publication number: 20050013350
    Abstract: Methods and systems for estimating and canceling pilot interference in a wireless (e.g., CDMA) communication system. In one method, a received signal comprised of a number of signal instances, each including a pilot, is initially processed to provide data samples. Each signal instance's pilot interference may be estimated by despreading the data samples with a spreading sequence for the signal instance, channelizing the despread data to provide pilot symbols, filtering the pilot symbols to estimate the channel response of the signal instance, and multiplying the estimated channel response with the spreading sequence. The pilot interference estimates due to a plurality of interfering multipaths are accumulated to derive the total pilot interference, which is subtracted from the data samples to provide pilot-canceled data samples. These samples are then processed to derive demodulated data for each of at least one (desired) signal instance in the received signal.
    Type: Application
    Filed: August 17, 2004
    Publication date: January 20, 2005
    Inventors: Alessandro Coralli, Henry Pfister, Jilei Hou, John Smee, Roberto Padovani, Brian Butler, Jeffrey Levin, Thomas Wilborn, Paul Bender
  • Publication number: 20040165653
    Abstract: Techniques for performing equalization of multiple signals received by a terminal in soft handoff with multiple base stations. The received signal at the terminal is conditioned and digitized to provide a stream of received samples, which is then equalized/filtered with multiple sets of coefficients to provide multiple streams of transmit chip estimates. One set of coefficients is provided for each base station and is used to provide a corresponding stream of transmit chip estimates. The multiple streams of transmit chip estimates are further processed to provide multiple streams of data symbol estimates, one stream of data symbol estimates for each base station. The multiple streams of data symbol estimates are then scaled with multiple scaling factors and combined to provide a stream of combined data symbol estimates. The processing for the multiple base stations may be performed by a single hardware unit in a time division multiplexed manner.
    Type: Application
    Filed: February 21, 2003
    Publication date: August 26, 2004
    Inventors: Srikant Jayaraman, John Smee, Ivan Jesus Fernandez-Corbaton
  • Publication number: 20040131007
    Abstract: Pilot transmission schemes suitable for use in wireless multi-carrier (e.g., OFDM) communication systems. These pilot transmission schemes may utilize frequency, time, or both frequency and time orthogonality to achieve orthogonality among the pilots transmitted by multiple base stations on the downlink. Frequency orthogonality is achieved by transmitting pilots on disjoint sets of subbands. Time orthogonality is achieved by transmitting pilots using different orthogonal codes (e.g., Walsh codes). The pilots may also be scrambled with different scrambling codes, which are used to randomize pilot interference and to enable identification of the transmitters of these pilots. Pilot interference cancellation may be performed to improve performance since subbands used for data transmission by one transmitter may also be used for pilot transmission by another transmitter. Pilot interference is estimated and then subtracted from received symbols to obtain pilot-canceled symbols having improved quality.
    Type: Application
    Filed: February 7, 2003
    Publication date: July 8, 2004
    Inventors: John Smee, Jay Rod Walton, Durga Prasad Malladi
  • Publication number: 20040017846
    Abstract: A non-parametric matched filter receiver that includes a digital (e.g., FIR) filter and a channel estimator. The channel estimator (1) determines the timing to center the digital filter, (2) obtains the characteristics of the noise in received samples, (3) estimates the system response for the samples using a best linear unbiased (BLU) estimator, a correlating estimator, or some other type of estimator, and (4) derives a set of coefficients for the digital filter based on the estimated system response and the determined noise characteristics. The correlating estimator correlates the samples with their known values to obtain the estimated system response. The BLU estimator pre-processes the samples to whiten the noise, correlates the whitened samples with their known values, and applies a correction factor to obtain the estimated system response. The digital filter then filters the samples with the set of coefficients to provide demodulated symbols.
    Type: Application
    Filed: July 26, 2002
    Publication date: January 29, 2004
    Inventors: Ivan Jesus Fernandez-Corbaton, John Smee, Srikant Jayaraman
  • Publication number: 20030223489
    Abstract: Techniques for selecting either a DFE or an LE for use to equalize a received signal, and for quickly and efficiently determining the coefficients for the selected equalizer. In an embodiment, a method is provided whereby the DFE is initially adapted based on the received signal and a particular adaptive algorithm (e.g., the LMS algorithm) for an initial time period. A quality metric is then determined for an output of the DFE. The DFE is selected for use if the quality metric is better than a threshold value, and the LE is selected otherwise. If the LE is selected, then the initial values for the coefficients of the LE may be derived based on the coefficients of a feed-forward filter and a feedback filter for the DFE, and the LE coefficients may further be adapted for an additional time period prior to its use to equalize the received signal.
    Type: Application
    Filed: June 4, 2002
    Publication date: December 4, 2003
    Inventors: John Smee, Ivan Jesus Fernandez-Corbaton, Srikant Jayaraman
  • Publication number: 20030185292
    Abstract: Systems and techniques for filtering digital samples are disclosed in which a number of filter coefficients are adapted, and the digital samples are filtered by applying one of the filter coefficients to a parameter, applying each remaining filter coefficient to one of the samples, and combining the parameter and the samples. The adaptation of the filter coefficients is a function of the combined parameter and digital samples. It is emphasized that this abstract is provided to comply with the rules requiring an abstract which will allow a searcher or other reader to quickly ascertain the subject matter of the technical disclosure. It is submitted with the understanding that it will not be used to interpret or limit the scope or the meaning of the claims.
    Type: Application
    Filed: April 2, 2002
    Publication date: October 2, 2003
    Inventors: Ivan Jesus Fernandez-Corbaton, Srikant Jayaraman, John Smee
  • Publication number: 20030156635
    Abstract: Systems and techniques for filtering digital samples is disclosed in which a number of filter coefficients are adapted, and the digital samples are filtered by applying one of the filter coefficients to a parameter, applying each remaining filter coefficient to one of the samples, and combining the parameter and the samples. The adaptation of the filter coefficients is a function of the combined parameter and digital samples. It is emphasized that this abstract is provided to comply with the rules requiring an abstract which will allow a searcher or other reader to quickly ascertain the subject matter of the technical disclosure. It is submitted with the understanding that it will not be used to interpret or limit the scope or the meaning of the claims.
    Type: Application
    Filed: February 20, 2002
    Publication date: August 21, 2003
    Inventors: Ivan Jesus Fernandez-Corbaton, John Smee, Srikant Jayaraman
  • Publication number: 20030092417
    Abstract: A carrier recovery method and apparatus using multiple stages of carrier frequency recovery are disclosed. A receiver uses multiple frequency generation sources to generate carrier signals used to downconvert a received signal. An analog frequency reference having a wide frequency range and coarse frequency resolution is used in conjunction with a digital frequency reference having a narrow frequency range and fine frequency resolution. The multiple carrier signals are multiplied by a received signal to effect a multi-stage downconversion, resulting in a baseband signal. A frequency tracking module measures the residual frequency error present in the baseband signal. The measured residual frequency error is then used to adjust the frequencies of the carrier signals generated by the multiple frequency generation sources.
    Type: Application
    Filed: March 29, 2002
    Publication date: May 15, 2003
    Inventors: Ivan Jesus Fernandez-Corbaton, John Smee, Srikant Jayaraman