Patents by Inventor John Smyth

John Smyth has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230404122
    Abstract: Processes for the preparation of glycosylated steviol glycoside compositions useful as sweeteners and flavor modifiers in food and beverage products and the like are improved by the use of basic conditions before, during and/or after an enzyme-catalyzed glycosylation of a steviol glycoside composition.
    Type: Application
    Filed: September 1, 2023
    Publication date: December 21, 2023
    Applicant: Tate & Lyle Solutions USA LLC
    Inventors: Joshua Fletcher, Ryan Woodyer, Mikhail Gololobov, Ryan Gross, John Smythe, Salma Siraj, Xian Chen, James Gaddy
  • Patent number: 11700870
    Abstract: Tri- and tetra-saccharides are used in foods, beverages and other consumable products to mask or reduce the unpleasant taste of certain components also present in such products, such as the bitter taste of certain high intensity sweeteners. The organoleptic qualities of the products are thereby improved. In particular, melezitose, maltotriose and maltotetraose effectively reduce the bitterness of consumable products containing steviol glycosides such as rebaudioside A.
    Type: Grant
    Filed: August 31, 2017
    Date of Patent: July 18, 2023
    Assignee: Tate & Lyle Solutions USA LLC
    Inventors: Mikhail Gololobov, Joshua Fletcher, John Smythe, Ryan D. Woodyer
  • Patent number: 10656354
    Abstract: A structure for optically aligning an optical fiber to a photonic device and method of fabrication of same. The structure optically aligns an optical fiber to the photonic device using a lens between the two which is moveable by actuator heads. The lens is moveable by respective motive sources associated with the actuator heads.
    Type: Grant
    Filed: March 26, 2018
    Date of Patent: May 19, 2020
    Assignee: Micron Technology, Inc.
    Inventors: Gurtej Sandhu, Roy Meade, Lei Bi, John Smythe
  • Publication number: 20190313680
    Abstract: The present invention relates to methods for modifying or enhancing a flavor of a food or beverage product, and to flavored food and beverage products With a modified or enhanced flavor.
    Type: Application
    Filed: December 13, 2017
    Publication date: October 17, 2019
    Applicant: Tate & Lyle Ingredients Americas LLC
    Inventors: Joshua Nehemiah Fletcher, John Smythe
  • Publication number: 20190297932
    Abstract: Processes for the preparation of glycosylated steviol glycoside compositions useful sweeteners and flavor modifiers in food and beverage products and the like are improved by the use of basic conditions before, during and/or after an enzyme-catalyzed glycosylation of a steviol glycoside composition.
    Type: Application
    Filed: June 5, 2017
    Publication date: October 3, 2019
    Applicant: Tate & Lyle Ingredients Americas LLC
    Inventors: Joshua Fletcher, Ryan Woodyer, Mikhail Gololobov, Ryan Gross, John Smythe, Salma Siraj, Xian Chen, James Gaddy
  • Publication number: 20190239540
    Abstract: Tri- and tetra-saccharides are used in foods, beverages and other consumable products to mask or reduce the unpleasant taste of certain components also present in such products, such as the bitter taste of certain high intensity sweeteners. The organoleptic qualities of the products are thereby improved. In particular, melezitose, maltotriose and maltotetraose effectively reduce the bitterness of consumable products containing steviol glycosides such as rebaudioside A.
    Type: Application
    Filed: August 31, 2017
    Publication date: August 8, 2019
    Applicant: Tate & Lyle Ingredients Americas LLC
    Inventors: Mikhail Gololobov, Joshua Fletcher, John Smythe, Ryan D. Woodyer
  • Publication number: 20180224614
    Abstract: A structure for optically aligning an optical fiber to a photonic device and method of fabrication of same. The structure optically aligns an optical fiber to the photonic device using a lens between the two which is moveable by actuator heads. The lens is moveable by respective motive sources associated with the actuator heads.
    Type: Application
    Filed: March 26, 2018
    Publication date: August 9, 2018
    Inventors: Gurtej Sandhu, Roy Meade, Lei Bi, John Smythe
  • Patent number: 9958624
    Abstract: A structure for optically aligning an optical fiber to a protonic device and method of fabrication of same. The structure optically aligns an optical fiber to the protonic device using a lens between the two which is moveable by actuator heads. The lens is moveable by respective motive sources associated with the actuator heads.
    Type: Grant
    Filed: June 30, 2017
    Date of Patent: May 1, 2018
    Assignee: Micron Technology, Inc.
    Inventors: Gurtej Sandhu, Roy Meade, Lei Bi, John Smythe
  • Publication number: 20180003905
    Abstract: A structure for optically aligning an optical fiber to a protonic device and method of fabrication of same. The structure optically aligns an optical fiber to the protonic device using a lens between the two which is moveable by actuator heads. The lens is moveable by respective motive sources associated with the actuator heads.
    Type: Application
    Filed: June 30, 2017
    Publication date: January 4, 2018
    Inventors: Gurtej Sandhu, Roy Meade, Lei Bi, John Smythe
  • Patent number: 9715070
    Abstract: A structure for optically aligning an optical fiber to a photonic device and method of fabrication of same. The structure optically aligns an optical fiber to the photonic device using a lens between the two which is moveable by actuator heads. The lens is moveable by respective motive sources associated with the actuator heads.
    Type: Grant
    Filed: November 28, 2016
    Date of Patent: July 25, 2017
    Assignee: Micron Technology, Inc.
    Inventors: Gurtej Sandhu, Roy Meade, Lei Bi, John Smythe
  • Patent number: 9666801
    Abstract: A method of forming a non-volatile resistive oxide memory cell includes forming a first conductive electrode of the memory cell as part of a substrate. Metal oxide-comprising material is formed over the first conductive electrode. Etch stop material is deposited over the metal oxide-comprising material. Conductive material is deposited over the etch stop material. A second conductive electrode of the memory cell which comprises the conductive material received is formed over the etch stop material. Such includes etching through the conductive material to stop relative to the etch stop material and forming the non-volatile resistive oxide memory cell to comprise the first and second conductive electrodes having both the metal oxide-comprising material and the etch stop material therebetween. Other implementations are contemplated.
    Type: Grant
    Filed: May 16, 2016
    Date of Patent: May 30, 2017
    Assignee: Micron Technology, Inc.
    Inventors: Nishant Sinha, John Smythe, Bhaskar Srinivasan, Gurtej S. Sandhu, Joseph Neil Greeley, Kunal R. Parekh
  • Publication number: 20170139163
    Abstract: A structure for optically aligning an optical fiber to a photonic device and method of fabrication of same. The structure optically aligns an optical fiber to the photonic device using a lens between the two which is moveable by actuator heads. The lens is moveable by respective motive sources associated with the actuator heads.
    Type: Application
    Filed: November 28, 2016
    Publication date: May 18, 2017
    Inventors: Gurtej Sandhu, Roy Meade, Lei Bi, John Smythe
  • Patent number: 9577186
    Abstract: A method of forming a non-volatile resistive oxide memory cell includes forming a first conductive electrode of the memory cell as part of a substrate. The first conductive electrode has an elevationally outermost surface and opposing laterally outermost edges at the elevationally outermost surface in one planar cross section. Multi-resistive state metal oxide-comprising material is formed over the first conductive electrode. Conductive material is deposited over the multi-resistive state metal oxide-comprising material. A second conductive electrode of the memory cell which comprises the conductive material is received over the multi-resistive state metal oxide-comprising material.
    Type: Grant
    Filed: June 4, 2012
    Date of Patent: February 21, 2017
    Assignee: Micron Technology, Inc.
    Inventors: Bhaskar Srinivasan, Gurtej Sandhu, John Smythe
  • Patent number: 9507104
    Abstract: A structure for optically aligning an optical fiber to a photonic device and method of fabrication of same. The structure optically aligns an optical fiber to the photonic device using a lens between the two which is moveable by actuator heads. The lens is moveable by respective motive sources associated with the actuator heads.
    Type: Grant
    Filed: April 20, 2016
    Date of Patent: November 29, 2016
    Assignee: Micron Technology, Inc.
    Inventors: Gurtej Sandhu, Roy Meade, Lei Bi, John Smythe
  • Publication number: 20160260899
    Abstract: A method of forming a non-volatile resistive oxide memory cell includes forming a first conductive electrode of the memory cell as part of a substrate. Metal oxide-comprising material is formed over the first conductive electrode. Etch stop material is deposited over the metal oxide-comprising material. Conductive material is deposited over the etch stop material. A second conductive electrode of the memory cell which comprises the conductive material received is formed over the etch stop material. Such includes etching through the conductive material to stop relative to the etch stop material and forming the non-volatile resistive oxide memory cell to comprise the first and second conductive electrodes having both the metal oxide-comprising material and the etch stop material therebetween. Other implementations are contemplated.
    Type: Application
    Filed: May 16, 2016
    Publication date: September 8, 2016
    Applicant: Micron Technology, Inc.
    Inventors: Nishant Sinha, John Smythe, Bhaskar Srinivasan, Gurtej S. Sandhu, Joseph Neil Greeley, Kunal R. Parekh
  • Publication number: 20160231519
    Abstract: A structure for optically aligning an optical fiber to a photonic device and method of fabrication of same. The structure optically aligns an optical fiber to the photonic device using a lens between the two which is moveable by actuator heads. The lens is moveable by respective motive sources associated with the actuator heads.
    Type: Application
    Filed: April 20, 2016
    Publication date: August 11, 2016
    Inventors: Gurtej Sandhu, Roy Meade, Lei Bi, John Smythe
  • Patent number: 9343665
    Abstract: A method of forming a non-volatile resistive oxide memory cell includes forming a first conductive electrode of the memory cell as part of a substrate. Metal oxide-comprising material is formed over the first conductive electrode. Etch stop material is deposited over the metal oxide-comprising material. Conductive material is deposited over the etch stop material. A second conductive electrode of the memory cell which comprises the conductive material received is formed over the etch stop material. Such includes etching through the conductive material to stop relative to the etch stop material and forming the non-volatile resistive oxide memory cell to comprise the first and second conductive electrodes having both the metal oxide-comprising material and the etch stop material therebetween. Other implementations are contemplated.
    Type: Grant
    Filed: July 2, 2008
    Date of Patent: May 17, 2016
    Assignee: Micron Technology, Inc.
    Inventors: Nishant Sinha, John Smythe, Bhaskar Srinivasan, Gurtej S. Sandhu, Joseph Neil Greeley, Kunal R. Parekh
  • Patent number: 9341787
    Abstract: A structure for optically aligning an optical fiber to a photonic device and method of fabrication of same. The structure optically aligns an optical fiber to the photonic device using a lens between the two which is moveable by actuator heads. The lens is moveable by respective motive sources associated with the actuator heads.
    Type: Grant
    Filed: January 2, 2013
    Date of Patent: May 17, 2016
    Assignee: Micron Technology, Inc.
    Inventors: Gurtej Sandhu, Roy Meade, Lei Bi, John Smythe
  • Patent number: 9214627
    Abstract: Some embodiments include memory cells. The memory cells may have a first electrode, and a trench-shaped programmable material structure over the first electrode. The trench-shape defines an opening. The programmable material may be configured to reversibly retain a conductive bridge. The memory cell may have an ion source material directly against the programmable material, and may have a second electrode within the opening defined by the trench-shaped programmable material. Some embodiments include arrays of memory cells. The arrays may have first electrically conductive lines, and trench-shaped programmable material structures over the first lines. The trench-shaped structures may define openings within them. Ion source material may be directly against the programmable material, and second electrically conductive lines may be over the ion source material and within the openings defined by the trench-shaped structures.
    Type: Grant
    Filed: April 15, 2015
    Date of Patent: December 15, 2015
    Assignee: Micron Technology, Inc.
    Inventors: Scott E. Sills, Gurtej S. Sandhu, Sanh D. Tang, John Smythe
  • Patent number: 9123888
    Abstract: Some embodiments include memory cells. The memory cells may have a first electrode, and a trench-shaped programmable material structure over the first electrode. The trench-shape defines an opening. The programmable material may be configured to reversibly retain a conductive bridge. The memory cell may have an ion source material directly against the programmable material, and may have a second electrode within the opening defined by the trench-shaped programmable material. Some embodiments include arrays of memory cells. The arrays may have first electrically conductive lines, and trench-shaped programmable material structures over the first lines. The trench-shaped structures may define openings within them. Ion source material may be directly against the programmable material, and second electrically conductive lines may be over the ion source material and within the openings defined by the trench-shaped structures.
    Type: Grant
    Filed: July 31, 2014
    Date of Patent: September 1, 2015
    Assignee: Micron Technology, Inc.
    Inventors: Scott E. Sills, Gurtej S. Sandhu, Sanh D. Tang, John Smythe