Patents by Inventor John Stephen Drewery

John Stephen Drewery has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230317437
    Abstract: A processing chamber such as a plasma etch chamber can perform deposition and etch operations, where byproducts of the deposition and etch operations can build up in a vacuum pump system fluidly coupled to the processing chamber. A vacuum pump system may have multiple roughing pumps so that etch gases can be diverted a roughing pump and deposition precursors can be diverted to another roughing pump. A divert line may route unused deposition precursors through a separate roughing pump. Deposition byproducts can be prevented from forming by incorporating one or more gas ejectors or venturi pumps at an outlet of a primary pump in a vacuum pump system. Cleaning operations, such as waferless automated cleaning operations, using certain clean chemistries may remove deposition byproducts before or after etch operations.
    Type: Application
    Filed: June 6, 2023
    Publication date: October 5, 2023
    Inventors: John Stephen DREWERY, Tom A. KAMP, Haoquan YAN, John Edward DAUGHERTY, Ali Sucipto TAN, Ming-Kuei TSENG, Bruce Edmund FREEMAN
  • Publication number: 20230274913
    Abstract: Systems and methods for synchronization of radio frequency (RF) generators are described. One of the methods includes receiving, by a first RF generator, a first recipe set, which includes information regarding a first plurality of pulse blocks for operating the first RF generator. The method further includes receiving, by a second RF generator, a second recipe set, which includes information regarding a second plurality of pulse blocks for operating a second RF generator. Upon receiving a digital pulsed signal, the method includes executing the first recipe set and executing the second recipe set. The method further includes outputting a first one of the pulse blocks of the first plurality based on the first recipe set in synchronization with a synchronization signal. The method includes outputting a first one of the pulse blocks of the second plurality based on the second recipe set in synchronization with the synchronization signal.
    Type: Application
    Filed: September 24, 2021
    Publication date: August 31, 2023
    Inventors: Ying Wu, John Stephen Drewery, Alexander Miller Paterson, Xiang Zhou, Zhuoxian Wang, Yoshie Kimura
  • Publication number: 20230274912
    Abstract: In one embodiment, the disclosed apparatus is a heat-pipe cooling system that includes a conical structure having an upper portion that is configured to be formed above a dielectric window with the conical structure being configured to condense vapor from a heat-transfer fluid placed or incorporated within a volume formed between the dielectric window and the conical structure. At least one cooling coil is formed on an exterior portion of the conical structure. Other apparatuses and systems are disclosed.
    Type: Application
    Filed: May 2, 2023
    Publication date: August 31, 2023
    Inventors: John Stephen Drewery, Neil Martin Paul Benjamin
  • Patent number: 11710623
    Abstract: A processing chamber such as a plasma etch chamber can perform deposition and etch operations, where byproducts of the deposition and etch operations can build up in a vacuum pump system fluidly coupled to the processing chamber. A vacuum pump system may have multiple roughing pumps so that etch gases can be diverted a roughing pump and deposition precursors can be diverted to another roughing pump. A divert line may route unused deposition precursors through a separate roughing pump. Deposition byproducts can be prevented from forming by incorporating one or more gas ejectors or venturi pumps at an outlet of a primary pump in a vacuum pump system. Cleaning operations, such as waferless automated cleaning operations, using certain clean chemistries may remove deposition byproducts before or after etch operations.
    Type: Grant
    Filed: May 7, 2021
    Date of Patent: July 25, 2023
    Assignee: Lam Research Corporation
    Inventors: John Stephen Drewery, Tom A. Kamp, Haoquan Yan, John Edward Daugherty, Ali Sucipto Tan, Ming-Kuei Tseng, Bruce Freeman
  • Publication number: 20230230805
    Abstract: Systems and methods for synchronization of radio frequency (RF) pulsing schemes and of sensor data collection are described. One of the methods includes receiving, by an RF generator, a first set of one or more variable levels and one or more duty cycles of an RF signal. The method further includes receiving, by the RF generator from a pulse controller, a synchronization signal having a plurality of pulses. The method also includes generating, during a clock cycle of a clock signal, multiple instances of a first plurality of states of the RF signal in synchronization with the plurality of pulses of the synchronization signal. Each of the first plurality of states of the RF signal has a corresponding one of the one or more variable levels of the first set and a corresponding one of the one or more duty cycles of the first set.
    Type: Application
    Filed: October 15, 2021
    Publication date: July 20, 2023
    Inventors: John Stephen Drewery, Ying Wu, Alexander Miller Paterson, Luc Albarede
  • Patent number: 11676798
    Abstract: In one embodiment, the disclosed apparatus is a heat-pipe cooling system that includes a conical structure having an upper portion that is truncated. The conical structure is configured to be formed above a dielectric window with the conical structure being configured to condense vapor from a heat-transfer fluid placed or formed within a volume formed between the dielectric window and the conical structure. At least one cooling coil is formed on an exterior portion of the conical structure. Other apparatuses and systems are disclosed.
    Type: Grant
    Filed: April 7, 2020
    Date of Patent: June 13, 2023
    Assignee: Lam Research Corporation
    Inventors: John Stephen Drewery, Neil Martin Paul Benjamin
  • Publication number: 20230170227
    Abstract: A temperature control system comprises an enclosure having an intake aperture and an exhaust aperture. An air amplifier disposed inside the enclosure. A gas supply line is connected to the air amplifier through the intake aperture. The gas supply line supplies a first flow of gas to the air amplifier. The air amplifier amplifies the first flow of gas to a second flow of gas inside the enclosure. The second flow of gas exits through the exhaust aperture.
    Type: Application
    Filed: April 19, 2021
    Publication date: June 1, 2023
    Inventors: Neil Martin Paul Benjamin, John Stephen Drewery
  • Publication number: 20220415702
    Abstract: Systems and techniques for providing for semiconductor processing chambers configured for use with two concentric edge rings with dual-lift mechanisms are disclosed. The dual-lift mechanisms may each have a first lifter structure and a second lifter structure which may be each at least partially independently actuatable. The first lifter structure may be used to move a lower edge ring of the edge rings between two or more vertically offset positions, and the second lifter structure may be used to raise and lower an upper edge ring of the edge rings. The dual-lift mechanism may be interfaced to the chamber housing of the semiconductor processing chamber.
    Type: Application
    Filed: February 22, 2021
    Publication date: December 29, 2022
    Inventors: John Stephen Drewery, James E. Tappan
  • Publication number: 20220139671
    Abstract: In one embodiment, the disclosed apparatus is a heat-pipe cooling system that includes a conical structure having an upper portion that is truncated. The conical structure is configured to be formed above a dielectric window with the conical structure being configured to condense vapor from a heat-transfer fluid placed or formed within a volume formed between the dielectric window and the conical structure. At least one cooling coil is formed on an exterior portion of the conical structure. Other apparatuses and systems are disclosed.
    Type: Application
    Filed: April 7, 2020
    Publication date: May 5, 2022
    Inventors: John Stephen Drewery, Neil Martin Paul Benjamin
  • Publication number: 20210257195
    Abstract: A processing chamber such as a plasma etch chamber can perform deposition and etch operations, where byproducts of the deposition and etch operations can build up in a vacuum pump system fluidly coupled to the processing chamber. A vacuum pump system may have multiple roughing pumps so that etch gases can be diverted a roughing pump and deposition precursors can be diverted to another roughing pump. A divert line may route unused deposition precursors through a separate roughing pump. Deposition byproducts can be prevented from forming by incorporating one or more gas ejectors or venturi pumps at an outlet of a primary pump in a vacuum pump system. Cleaning operations, such as waferless automated cleaning operations, using certain clean chemistries may remove deposition byproducts before or after etch operations.
    Type: Application
    Filed: May 7, 2021
    Publication date: August 19, 2021
    Inventors: John Stephen DREWERY, Tom A. KAMP, Haoquan YAN, John Edward DAUGHERTY, Ali Sucipto TAN, Ming-Kuei TSENG, Bruce FREEMAN
  • Patent number: 11031215
    Abstract: A processing chamber such as a plasma etch chamber can perform deposition and etch operations, where byproducts of the deposition and etch operations can build up in a vacuum pump system fluidly coupled to the processing chamber. A vacuum pump system may have multiple roughing pumps so that etch gases can be diverted a roughing pump and deposition precursors can be diverted to another roughing pump. A divert line may route unused deposition precursors through a separate roughing pump. Deposition byproducts can be prevented from forming by incorporating one or more gas ejectors or venturi pumps at an outlet of a primary pump in a vacuum pump system. Cleaning operations, such as waferless automated cleaning operations, using certain clean chemistries may remove deposition byproducts before or after etch operations.
    Type: Grant
    Filed: September 26, 2019
    Date of Patent: June 8, 2021
    Assignee: Lam Research Corporation
    Inventors: John Stephen Drewery, Tom A. Kamp, Haoquan Yan, John Edward Daugherty, Ali Sucipto Tan, Ming-Kuei Tseng, Bruce Edmund Freeman
  • Publication number: 20200105509
    Abstract: A processing chamber such as a plasma etch chamber can perform deposition and etch operations, where byproducts of the deposition and etch operations can build up in a vacuum pump system fluidly coupled to the processing chamber. A vacuum pump system may have multiple roughing pumps so that etch gases can be diverted a roughing pump and deposition precursors can be diverted to another roughing pump. A divert line may route unused deposition precursors through a separate roughing pump. Deposition byproducts can be prevented from forming by incorporating one or more gas ejectors or venturi pumps at an outlet of a primary pump in a vacuum pump system. Cleaning operations, such as waferless automated cleaning operations, using certain clean chemistries may remove deposition byproducts before or after etch operations.
    Type: Application
    Filed: September 26, 2019
    Publication date: April 2, 2020
    Inventors: John Stephen Drewery, Tom A. Kamp, Haoquan Yan, John Edward Daugherty, Ali Sucipto Tan, Ming-Kuei Tseng, Bruce Edmund Freeman
  • Publication number: 20140014522
    Abstract: Selectively accelerated or selectively inhibited metal deposition is performed to form metal structures of an electronic device. A desired pattern of an accelerator or of an inhibitor is applied to the substrate; for example, by stamping the substrate with a patterned stamp or spraying a solution using an inkjet printer. In other embodiments, a global layer of accelerator or inhibitor is applied to a substrate and selectively modified in a desired pattern. Thereafter, selective metal deposition is performed.
    Type: Application
    Filed: July 23, 2013
    Publication date: January 16, 2014
    Applicant: Novellus Systems, Inc.
    Inventors: Steven T. Mayer, John Stephen Drewery, Eric G. Webb
  • Patent number: 8500985
    Abstract: Selectively accelerated or selectively inhibited metal deposition is performed to form metal structures of an electronic device. A desired pattern of an accelerator or of an inhibitor is applied to the substrate; for example, by stamping the substrate with a patterned stamp or spraying a solution using an inkjet printer. In other embodiments, a global layer of accelerator or inhibitor is applied to a substrate and selectively modified in a desired pattern. Thereafter, selective metal deposition is performed.
    Type: Grant
    Filed: July 13, 2007
    Date of Patent: August 6, 2013
    Assignee: Novellus Systems, Inc.
    Inventors: Steven T. Mayer, John Stephen Drewery, Eric G. Webb
  • Patent number: 7947163
    Abstract: Selectively accelerated or selectively inhibited metal deposition is performed to form metal structures of an electronic device. A desired pattern of an accelerator or of an inhibitor is applied to the substrate; for example, by stamping the substrate with a patterned stamp or spraying a solution using an inkjet printer. In other embodiments, a global layer of accelerator or inhibitor is applied to a substrate and selectively modified in a desired pattern. Thereafter, selective metal deposition is performed.
    Type: Grant
    Filed: August 6, 2007
    Date of Patent: May 24, 2011
    Assignee: Novellus Systems, Inc.
    Inventors: Steven T. Mayer, John Stephen Drewery, Eric G. Webb
  • Patent number: 7686935
    Abstract: Pad-assisted electropolishing of the substrate is conducted by performing anodic dissolution of metal at a first portion of the substrate and simultaneously mechanically buffing a second portion of the substrate with a buffing pad. Anodic dissolution includes forming a thin liquid layer of electropolishing liquid between the anodic substrate and a cathodic electropolishing head. The location of electrical contacts between the substrate and power supply allow peripheral edge regions of the substrate to be mechanically buffed with the pad. Preferably, a substrate is further planararized using an isotropic material-removal technique. An apparatus includes an electropolishing head that is movable to a position proximate to a first portion of a substrate to form a thin gap, and a buffing pad that mechanically buffs a second portion of the substrate using minimal pressure.
    Type: Grant
    Filed: August 26, 2005
    Date of Patent: March 30, 2010
    Assignee: Novellus Systems, Inc.
    Inventors: Steven T. Mayer, Julia Svirchevski, John Stephen Drewery
  • Publication number: 20090277801
    Abstract: Selectively accelerated or selectively inhibited metal deposition is performed to form metal structures of an electronic device. A desired pattern of an accelerator or of an inhibitor is applied to the substrate; for example, by stamping the substrate with a patterned stamp or spraying a solution using an inkjet printer. In other embodiments, a global layer of accelerator or inhibitor is applied to a substrate and selectively modified in a desired pattern. Thereafter, selective metal deposition is performed.
    Type: Application
    Filed: August 6, 2007
    Publication date: November 12, 2009
    Applicant: Novellus Systems, Inc.
    Inventors: Steven T. Mayer, John Stephen Drewery, Eric G. Webb
  • Publication number: 20090277802
    Abstract: Pad-assisted electropolishing of the substrate is conducted by performing anodic dissolution of metal at a first portion of the substrate and simultaneously mechanically buffing a second portion of the substrate with a buffing pad. Anodic dissolution includes forming a thin liquid layer of electropolishing liquid between the anodic substrate and a cathodic electropolishing head. The location of electrical contacts between the substrate and power supply allow peripheral edge regions of the substrate to be mechanically buffed with the pad. Preferably, a substrate is further planararized using an isotropic material-removal technique. An apparatus includes an electropolishing head that is movable to a position proximate to a first portion of a substrate to form a thin gap, and a buffing pad that mechanically buffs a second portion of the substrate using minimal pressure.
    Type: Application
    Filed: August 26, 2005
    Publication date: November 12, 2009
    Applicant: Novellus Systems, Inc.
    Inventors: Steven T. Mayer, Julia Svirchevski, John Stephen Drewery
  • Publication number: 20090280243
    Abstract: Selectively accelerated or selectively inhibited metal deposition is performed to form metal structures of an electronic device. A desired pattern of an accelerator or of an inhibitor is applied to the substrate; for example, by stamping the substrate with a patterned stamp or spraying a solution using an inkjet printer. In other embodiments, a global layer of accelerator or inhibitor is applied to a substrate and selectively modified in a desired pattern. Thereafter, selective metal deposition is performed.
    Type: Application
    Filed: July 13, 2007
    Publication date: November 12, 2009
    Applicant: Novellus Systems, Inc.
    Inventors: Steven T. Mayer, John Stephen Drewery, Eric G. Webb
  • Publication number: 20090266707
    Abstract: Pad-assisted electropolishing of the substrate is conducted by performing anodic dissolution of metal at a first portion of the substrate and simultaneously mechanically buffing a second portion of the substrate with a buffing pad. Anodic dissolution includes forming a thin liquid layer of electropolishing liquid between the anodic substrate and a cathodic electropolishing head. The location of electrical contacts between the substrate and power supply allow peripheral edge regions of the substrate to be mechanically buffed with the pad. Preferably, a substrate is further planararized using an isotropic material-removal technique. An apparatus includes an electropolishing head that is movable to a position proximate to a first portion of a substrate to form a thin gap, and a buffing pad that mechanically buffs a second portion of the substrate using minimal pressure.
    Type: Application
    Filed: August 6, 2007
    Publication date: October 29, 2009
    Applicant: Novellus Systems, Inc.
    Inventors: Steven T. Mayer, Julia Svirchevski, John Stephen Drewery