Patents by Inventor John Szarejko

John Szarejko has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11299552
    Abstract: The present disclosure generally relates to chimeric antigen receptors, more specifically to chimeric antigen receptor compositions and methods for use of the same. The present disclosure also provides for nucleic acid molecules and expression vectors for making and using the chimeric antigen receptors and for co-receptor signaling using such chimeric antigen receptors. The present disclosure also provides methods of treatment using such compositions. The chimeric antigen receptors of the present disclosure interact with the endogenous T-cell receptor complex enabling physiological control of signaling and T-cell response and can be combined with ligands such as co-stimulatory ligands for further controlling and influencing T-cell activation and response.
    Type: Grant
    Filed: November 1, 2018
    Date of Patent: April 12, 2022
    Assignee: University of Kansas
    Inventors: Thomas Yankee, John Szarejko
  • Publication number: 20220008474
    Abstract: Cell therapy compositions comprising engineered human regulatory T cells (eTregs) characterized by ectopic overexpression of FOXP3 and Helios protein, produced via introduction of separate nucleic acid constructs respectively encoding FOXP3 and Helios (FOXP3+ Helios+ eTregs). Cell therapy compositions comprising mixed populations of CD4+ and CD8+ Treg cells each with ectopic overexpression of FOXP3 and Helios. Methods of making and use the same for therapies involving inflammation and/or a disorder of the immune system.
    Type: Application
    Filed: September 29, 2021
    Publication date: January 13, 2022
    Inventors: Amara Seng, Ryan Fischer, Thomas Yankee, Mary Markiewicz, John Szarejko
  • Patent number: 11160832
    Abstract: Cell therapy compositions comprising engineered human regulatory T cells (eTregs) characterized by ectopic overexpression of FOXP3 and Helios protein, produced via introduction of separate nucleic acid constructs respectively encoding FOXP3 and Helios (FOXP3+Helios+eTregs). Cell therapy compositions comprising mixed populations of CD4+ and CD8+ Treg cells each with ectopic overexpression of FOXP3 and Helios. Methods of making and use the same for therapies involving inflammation and/or a disorder of the immune system.
    Type: Grant
    Filed: July 9, 2020
    Date of Patent: November 2, 2021
    Assignees: The Children's Mercy Hospital, The University of Kansas
    Inventors: Amara Seng, Ryan Fischer, Thomas Yankee, Mary Markiewicz, John Szarejko
  • Publication number: 20210008111
    Abstract: Cell therapy compositions comprising engineered human regulatory T cells (eTregs) characterized by ectopic overexpression of FOXP3 and Helios protein, produced via introduction of separate nucleic acid constructs respectively encoding FOXP3 and Helios (FOXP3+Helios+eTregs). Cell therapy compositions comprising mixed populations of CD4+ and CD8+ Treg cells each with ectopic overexpression of FOXP3 and Helios. Methods of making and use the same for therapies involving inflammation and/or a disorder of the immune system.
    Type: Application
    Filed: July 9, 2020
    Publication date: January 14, 2021
    Inventors: Amara Seng, Ryan Fischer, Thomas Yankee, Mary Markiewicz, John Szarejko
  • Publication number: 20190055318
    Abstract: The present disclosure generally relates to chimeric antigen receptors, more specifically to chimeric antigen receptor compositions and methods for use of the same. The present disclosure also provides for nucleic acid molecules and expression vectors for making and using the chimeric antigen receptors and for co-receptor signaling using such chimeric antigen receptors. The present disclosure also provides methods of treatment using such compositions. The chimeric antigen receptors of the present disclosure interact with the endogenous T-cell receptor complex enabling physiological control of signaling and T-cell response and can be combined with ligands such as co-stimulatory ligands for further controlling and influencing T-cell activation and response.
    Type: Application
    Filed: November 1, 2018
    Publication date: February 21, 2019
    Inventors: Thomas Yankee, John Szarejko