Patents by Inventor John T. Armstrong
John T. Armstrong has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 6813519Abstract: An implanted medical device (e.g. infusion pump) and external device communicate with one another via telemetry wherein messages are transmitted under a robust communication protocol. The communication protocol gives enhanced assurance concerning the integrity of messages that impact medical operations of the implantable device. Messages are transmitted using a multipart format that includes a preamble, a frame sync, a telemetry ID, data, and a validation code. The data portion of the message includes an op-code that dictates various other elements that form part of the message. The data portion may also include additional elements such as sequence numbers, bolus numbers, and duplicate data elements. A telemetry ID for the transmitting device may be implicitly embedded in the message as part of the validation code that is sent with the message and that must be pre-known by the receiver to confirm the integrity of the received message.Type: GrantFiled: January 22, 2001Date of Patent: November 2, 2004Assignee: Medtronic Minimed, Inc.Inventors: Ronald J. Lebel, Varaz Shahmirian, Sam W. Bowman, IV, Robert C. Dennard, John T. Armstrong, John D. Richert
-
Patent number: 6811533Abstract: An implanted medical device (e.g. infusion pump) and external device communicate with one another via telemetry wherein messages are transmitted under a robust communication protocol. The communication protocol gives enhanced assurance concerning the integrity of messages that impact medical operations of the implantable device. Messages are transmitted using a multipart format that includes a preamble, a frame sync, a telemetry ID, data, and a validation code. The data portion of the message includes an op-code that dictates various other elements that form part of the message. The data portion may also include additional elements such as sequence numbers, bolus numbers, and duplicate data elements. A telemetry ID for the transmitting device may be implicitly embedded in the message as part of the validation code that is sent with the message and that must be pre-known by the receiver to confirm the integrity of the received message.Type: GrantFiled: January 22, 2001Date of Patent: November 2, 2004Assignee: Medtronic Minimed, Inc.Inventors: Ronald J. Lebel, Varaz Shahmirian, Sam W. Bowman, IV, Timothy J. Starkweather, Philip T. Weiss, Robert C. Dennard, John T. Armstrong, John D. Richert
-
Publication number: 20040210267Abstract: An implanted medical device (e.g. infusion pump) and external device communicate with one another via telemetry wherein messages are transmitted under a robust communication protocol. The communication protocol gives enhanced assurance concerning the integrity of messages that impact medical operations of the implantable device. Messages are transmitted using a multipart format that includes a preamble, a frame sync, a telemetry ID, data, and a validation code. The data portion of the message includes an op-code that dictates various other elements that form part of the message. The data portion may also include additional elements such as sequence numbers, bolus numbers, and duplicate data elements. A telemetry ID for the transmitting device may be implicitly embedded in the message as part of the validation code that is sent with the message and that must be pre-known by the receiver to confirm the integrity of the received message.Type: ApplicationFiled: May 11, 2004Publication date: October 21, 2004Applicant: Medtronic MiniMed, Inc.Inventors: Ronald J. Lebel, Varaz Shahmirian, Sam W. Bowman, Robert C. Dennard, John T. Armstrong, John D. Richert
-
Patent number: 6758810Abstract: An implanted medical device (e.g. infusion pump) and external device communicate with one another via telemetry wherein messages are transmitted under a robust communication protocol. The communication protocol gives enhanced assurance concerning the integrity of messages that impact medical operations of the implantable device. Messages are transmitted using a multipart format that includes a preamble, a frame sync, a telemetry ID, data, and a validation code. The data portion of the message includes an op-code that dictates various other elements that form part of the message. The data portion may also include additional elements such as sequence numbers, bolus numbers, and duplicate data elements. A telemetry ID for the transmitting device may be implicitly embedded in the message as part of the validation code that is sent with the message and that must be pre-known by the receiver to confirm the integrity of the received message.Type: GrantFiled: January 22, 2001Date of Patent: July 6, 2004Assignee: Medtronic Minimed, Inc.Inventors: Ronald J. Lebel, Varaz Shahmirian, Timothy J. Starkweather, Philip T. Weiss, John T. Armstrong, Robert C. Dennard, John D. Richert
-
Patent number: 6733446Abstract: An implanted medical device (e.g. infusion pump) and an external device communicate with one another via telemetry messages that are receivable only during windows or listening periods. Each listening period is open for a prescribed period of time and is spaced from successive listening periods by an interval. The prescribed period of time is typically kept small to minimize power consumption. To increase likelihood of successful communication, the window may be forced to an open state, by use of an attention signal, in anticipation of an incoming message. To further minimize power consumption, it is desirable to minimize use of extended attention signals, which is accomplished by the transmitter maintaining an estimate of listening period start times and attempting to send messages only during listening periods. In the communication device, the estimate is updated as a result of information obtained with the reception of each message from the medical device.Type: GrantFiled: January 22, 2001Date of Patent: May 11, 2004Assignee: Medtronic Minimed, Inc.Inventors: Ronald J. Lebel, Varaz Shahmirian, John C. Gord, John T. Armstrong, John D. Richert
-
Patent number: 6687546Abstract: An implanted medical device (e.g. infusion pump) and external device communicate with one another via telemetry wherein messages are transmitted under a robust communication protocol. The communication protocol gives enhanced assurance concerning the integrity of messages that impact medical operations of the implantable device. Messages are transmitted using a multipart format that includes a preamble, a frame sync, a telemetry ID, data, and a validation code. The data portion of the message includes an op-code that dictates various other elements that form part of the message. The data portion may also include additional elements such as sequence numbers, bolus numbers, and duplicate data elements. A telemetry ID for the transmitting device may be implicitly embedded in the message as part of the validation code that is sent with the message and that must be pre-known by the receiver to confirm the integrity of the received message.Type: GrantFiled: January 22, 2001Date of Patent: February 3, 2004Assignee: Medtronic Minimed, Inc.Inventors: Ronald J. Lebel, Varaz Shahmirian, Sam W. Bowman, IV, Timothy J. Starkweather, Philip T. Weiss, Robert C. Dennard, John T. Armstrong, John D. Richert
-
Patent number: 6659948Abstract: An implanted medical device (e.g. infusion pump) and an external device communicate with one another via telemetry messages that are receivable only during windows or listening periods. Each listening period is open for a prescribed period of time and is spaced from successive listening periods by an interval. The prescribed period of time is typically kept small to minimize power consumption. To increase likelihood of successful communication, the window may be forced to an open state, by use of an attention signal, in anticipation of an incoming message. To further minimize power consumption, it is desirable to minimize use of extended attention signals, which is accomplished by the transmitter maintaining an estimate of listening period start times and attempting to send messages only during listening periods. In the communication device, the estimate is updated as a result of information obtained with the reception of each message from the medical device.Type: GrantFiled: January 22, 2001Date of Patent: December 9, 2003Assignee: Medtronic Minimed, Inc.Inventors: Ronald J. Lebel, Varaz Shahmirian, Timothy J. Starkweather, Philip T. Weiss, Daniel H. Villegas, Robert C. Dennard, John T. Armstrong, John D. Richert
-
Publication number: 20030212441Abstract: An implanted medical device (e.g. infusion pump) and handheld communication device communicate with one another via telemetry wherein transmitted messages have enhanced numbers of and/or regularity of bit transitions to minimize the risk of synchronization loss between transmitted bits of data and received bits of data. Bit transitions for portions of messages may be enhanced by applying a pseudo-randomization scheme to those portions of messages that are transmitted in a way that allows the receiver to extract the original data from the received randomized data. Preferred randomization techniques modify (i.e. randomize) the data using a CRC value that is being accumulated while simultaneously causing the modified data to modify subsequent accumulation of the CRC itself. Upon reception, the reversal of data randomization occurs so that the intended message is appropriately received.Type: ApplicationFiled: May 12, 2003Publication date: November 13, 2003Applicant: Medtronic MiniMed, Inc.Inventors: Timothy J. Starkweather, Ronald J. Lebel, Daniel H. Villegas, Philip T. Weiss, John T. Armstrong, John D. Richert
-
Patent number: 6585644Abstract: An implanted medical device (e.g. infusion pump) and an external device communicate with one another via telemetry messages that are receivable only during windows or listening periods. Each listening period is open for a prescribed period of time and is spaced from successive listening periods by an interval. The prescribed period of time is typically kept small to minimize power consumption. To increase likelihood of successful communication, the window may be forced to an open state, by use of an attention signal, in anticipation of an incoming message. To further minimize power consumption, it is desirable to minimize use of extended attention signals, which is accomplished by the transmitter maintaining an estimate of listening period start times and attempting to send messages only during listening periods. In the communication device, the estimate is updated as a result of information obtained with the reception of each message from the medical device.Type: GrantFiled: January 22, 2001Date of Patent: July 1, 2003Assignee: Medtronic Minimed, Inc.Inventors: Ronald J. Lebel, Varaz Shahmirian, Timothy J. Starkweather, Philip T. Weiss, Daniel H. Villegas, Robert C. Dennard, John T. Armstrong, John D. Richert
-
Patent number: 6564105Abstract: An implanted medical device (e.g. infusion pump) and handheld communication device communicate with one another via telemetry wherein transmitted messages have enhanced numbers of and/or regularity of bit transitions to minimize the risk of synchronization loss between transmitted bits of data and received bits of data. Bit transitions for portions of messages may be enhanced by applying a pseudo-randomization scheme to those portions of messages that are transmitted in a way that allows the receiver to extract the original data from the received randomized data. Preferred randomization techniques modify (i.e. randomize) the data using a CRC value that is being accumulated while simultaneously causing the modified data to modify subsequent accumulation of the CRC itself. Upon reception, the reversal of data randomization occurs so that the intended message is appropriately received.Type: GrantFiled: January 22, 2001Date of Patent: May 13, 2003Assignee: Medtronic Minimed, Inc.Inventors: Timothy J. Starkweather, Ronald J. Lebel, Daniel H. Villegas, Philip T. Weiss, John T. Armstrong, John D. Richert
-
Publication number: 20030050535Abstract: An implanted medical device (e.g. infusion pump) and an external device communicate with one another via telemetry messages that are receivable only during windows or listening periods. Each listening period is open for a prescribed period of time and is spaced from successive listening periods by an interval. The prescribed period of time is typically kept small to minimize power consumption. To increase likelihood of successful communication, the window may be forced to an open state, by use of an attention signal, in anticipation of an incoming message. To further minimize power consumption, it is desirable to minimize use of extended attention signals, which is accomplished by the transmitter maintaining an estimate of listening period start times and attempting to send messages only during listening periods. In the communication device, the estimate is updated as a result of information obtained with the reception of each message from the medical device.Type: ApplicationFiled: January 22, 2001Publication date: March 13, 2003Inventors: Sam W. Bowman, Ronald J. Lebel, Varaz Shahmirian, Timothy J. Starkweather, Philip T. Weiss, Daniel H. Villegas, Robert C. Dennard, John T. Armstrong, John D. Richert
-
Publication number: 20030028080Abstract: An implanted medical device (e.g. infusion pump) and an external device communicate with one another via telemetry messages that are receivable only during windows or listening periods. Each listening period is open for a prescribed period of time and is spaced from successive listening periods by an interval. The prescribed period of time is typically kept small to minimize power consumption. To increase likelihood of successful communication, the window may be forced to an open state, by use of an attention signal, in anticipation of an incoming message. To further minimize power consumption, it is desirable to minimize use of extended attention signals, which is accomplished by the transmitter maintaining an estimate of listening period start times and attempting to send messages only during listening periods. In the communication device, the estimate is updated as a result of information obtained with the reception of each message from the medical device.Type: ApplicationFiled: January 22, 2001Publication date: February 6, 2003Inventors: Ronald J. Lebel, Varaz Shahmirian, John C. Gord, John T. Armstrong, John D. Richert
-
Publication number: 20030028079Abstract: An implanted medical device (e.g. infusion pump) and an external device communicate with one another via telemetry messages that are receivable only during windows or listening periods. Each listening period is open for a prescribed period of time and is spaced from successive listening periods by an interval. The prescribed period of time is typically kept small to minimize power consumption. To increase likelihood of successful communication, the window may be forced to an open state, by use of an attention signal, in anticipation of an incoming message. To further minimize power consumption, it is desirable to minimize use of extended attention signals, which is accomplished by the transmitter maintaining an estimate of listening period start times and attempting to send messages only during listening periods. In the communication device, the estimate is updated as a result of information obtained with the reception of each message from the medical device.Type: ApplicationFiled: January 22, 2001Publication date: February 6, 2003Inventors: Ronald J. Lebel, Varaz Shahmirian, Timothy J. Starkweather, Philip T. Weiss, Daniel H. Villegas, Robert C. Dennard, John T. Armstrong, John D. Richert
-
Publication number: 20030028184Abstract: An implanted medical device (e.g. infusion pump) and an external device communicate with one another via telemetry messages that are receivable only during windows or listening periods. Each listening period is open for a prescribed period of time and is spaced from successive listening periods by an interval. The prescribed period of time is typically kept small to minimize power consumption. To increase likelihood of successful communication, the window may be forced to an open state, by use of an attention signal, in anticipation of an incoming message. To further minimize power consumption, it is desirable to minimize use of extended attention signals, which is accomplished by the transmitter maintaining an estimate of listening period start times and attempting to send messages only during listening periods. In the communication device, the estimate is updated as a result of information obtained with the reception of each message from the medical device.Type: ApplicationFiled: January 22, 2001Publication date: February 6, 2003Inventors: Ronald J. Lebel, Varaz Shahmirian, Timothy J. Starkweather, Philip T. Weiss, Daniel H. Villegas, Robert C. Dennard, John T. Armstrong, John D. Richert
-
Publication number: 20030009203Abstract: An implanted medical device (e.g. infusion pump) and external device communicate with one another via telemetry wherein messages are transmitted under a robust communication protocol. The communication protocol gives enhanced assurance concerning the integrity of messages that impact medical operations of the implantable device. Messages are transmitted using a multipart format that includes a preamble, a frame sync, a telemetry ID, data, and a validation code. The data portion of the message includes an op-code that dictates various other elements that form part of the message. The data portion may also include additional elements such as sequence numbers, bolus numbers, and duplicate data elements. A telemetry ID for the transmitting device may be implicitly embedded in the message as part of the validation code that is sent with the message and that must be pre-known by the receiver to confirm the integrity of the received message.Type: ApplicationFiled: January 22, 2001Publication date: January 9, 2003Inventors: Ronald J. Lebel, Varaz Shahmirian, Sam W. Bowman, Timothy J. Starkweather, Philip T. Weiss, Robert C. Dennard, John T. Armstrong, John D. Richert
-
Publication number: 20020198513Abstract: An implanted medical device (e.g. infusion pump) and external device communicate with one another via telemetry wherein messages are transmitted under a robust communication protocol. The communication protocol gives enhanced assurance concerning the integrity of messages that impact medical operations of the implantable device. Messages are transmitted using a multipart format that includes a preamble, a frame sync, a telemetry ID, data, and a validation code. The data portion of the message includes an op-code that dictates various other elements that form part of the message. The data portion may also include additional elements such as sequence numbers, bolus numbers, and duplicate data elements. A telemetry ID for the transmitting device may be implicitly embedded in the message as part of the validation code that is sent with the message and that must be pre-known by the receiver to confirm the integrity of the received message.Type: ApplicationFiled: January 22, 2001Publication date: December 26, 2002Inventors: Ronald J. Lebel, Varaz Shahmirian, Sam W. Bowman, Robert C. Dennard, John T. Armstrong, John D. Richert
-
Publication number: 20020175805Abstract: An RFID system and method for communicating between a host computer, one or more interrogators connected to the host computer, and a large body of transponders distributed within an area covered by the interrogators. Each transponder originally has a common identification code, and upon initialization by the host computer internally generates a unique identification code based upon an internally generated random number. The host, through the interrogators, reads each of the identification codes associated with each transponder by iteratively transmitting a read identification code command along with a controlled variable. Each transponder compares the received controlled variable to an internally generated random number, and selectively transmits its identification code based upon the outcome of this comparison. After the completion of each read identification code iteration, the host adjusts the controlled variable based upon the responses received in the previous iteration.Type: ApplicationFiled: November 29, 2000Publication date: November 28, 2002Applicant: Ludwig KippInventors: John T. Armstrong, John D. Richert, John P. Palmer
-
Publication number: 20020173830Abstract: An implanted medical device (e.g. infusion pump) and handheld communication device communicate with one another via telemetry wherein transmitted messages have enhanced numbers of and/or regularity of bit transitions to minimize the risk of synchronization loss between transmitted bits of data and received bits of data. Bit transitions for portions of messages may be enhanced by applying a pseudo-randomization scheme to those portions of messages that are transmitted in a way that allows the receiver to extract the original data from the received randomized data. Preferred randomization techniques modify (i.e. randomize) the data using a CRC value that is being accumulated while simultaneously causing the modified data to modify subsequent accumulation of the CRC itself. Upon reception, the reversal of data randomization occurs so that the intended message is appropriately received.Type: ApplicationFiled: January 22, 2001Publication date: November 21, 2002Inventors: Timothy J. Starkweather, Ronald J. Lebel, Daniel H. Villegas, Philip T. Weiss, John T. Armstrong, John D. Richert
-
Publication number: 20020173702Abstract: An implanted medical device (e.g. infusion pump) and external device communicate with one another via telemetry wherein messages are transmitted under a robust communication protocol. The communication protocol gives enhanced assurance concerning the integrity of messages that impact medical operations of the implantable device. Messages are transmitted using a multipart format that includes a preamble, a frame sync, a telemetry ID, data, and a validation code. The data portion of the message includes an op-code that dictates various other elements that form part of the message. The data portion may also include additional elements such as sequence numbers, bolus numbers, and duplicate data elements. A telemetry ID for the transmitting device may be implicitly embedded in the message as part of the validation code that is sent with the message and that must be pre-known by the receiver to confirm the integrity of the received message.Type: ApplicationFiled: January 22, 2001Publication date: November 21, 2002Inventors: Ronald J. Lebel, Varaz Shahmirian, Sam W. Bowman, Timothy J. starkweather, Philip T. Weiss, Robert C. Dennard, John T. Armstrong, John D. Richert
-
Publication number: 20020173703Abstract: An implanted medical device (e.g. infusion pump) and external device communicate with one another via telemetry wherein messages are transmitted under a robust communication protocol. The communication protocol gives enhanced assurance concerning the integrity of messages that impact medical operations of the implantable device. Messages are transmitted using a multipart format that includes a preamble, a frame sync, a telemetry ID, data, and a validation code. The data portion of the message includes an op-code that dictates various other elements that form part of the message. The data portion may also include additional elements such as sequence numbers, bolus numbers, and duplicate data elements. A telemetry ID for the transmitting device may be implicitly embedded in the message as part of the validation code that is sent with the message and that must be pre-known by the receiver to confirm the integrity of the received message.Type: ApplicationFiled: January 22, 2001Publication date: November 21, 2002Inventors: Ronald J. Lebel, Varaz Shahmirian, Timothy J. Starkweather, Philip T. Weiss, John T. Armstrong, Robert C. Dennard, John D. Richert