Patents by Inventor John T Johnson

John T Johnson has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11971599
    Abstract: A sealed terminal has a housing, a cover, a splice tray, an adapter plate, and a splice chip. The cover is connected to the housing to close an interior compartment and has input ports for receiving one or more cables and an output adapter module having a plurality of distribution ports. The splice tray is positioned in the interior compartment and has one or more cable retainers configured to route the one or more cables within the interior compartment. The adapter plate is connected to the splice tray and has a plurality of adapters for connecting the one or more cables to the distribution ports. The splice chip is connected to the splice tray and has a plurality of slots for receiving and routing the one or more cables. The housing includes a radiused wall for routing the cables within the interior compartment without bending the cables.
    Type: Grant
    Filed: April 26, 2023
    Date of Patent: April 30, 2024
    Assignee: Clearfield, Inc.
    Inventors: John P. Hill, Daniel J. Johnson, Randy T. VanHorn, Walter E. Power, II
  • Publication number: 20240062681
    Abstract: Prosthesis simulator devices including a first restraint configured to restrain one or more fingers of a wearer of the simulator, a second restraint configured to restrain a thumb of the wearer, and a plurality of artificial digits configured to move in a manner to simulate one or more prosthetic fingers and a prosthetic thumb of a prosthesis. The first restraint can be attached to a roof plate connected to a base plate and defining a dorsal side of the prosthesis simulator. The second restraint can be attached to a holster connected to the base plate on a palmar side of the prosthesis simulator. Also disclosed herein are methods of using the same.
    Type: Application
    Filed: October 30, 2023
    Publication date: February 22, 2024
    Inventors: Bennett Leonard Alterman, William D. Hendrix, John T. Johnson, Perry J. Lee, Lewis A. Wheaton
  • Patent number: 11869380
    Abstract: Disclosed herein are prosthesis simulator devices comprising a first restraint configured to restrain one or more fingers of a wearer of the simulator, a second restraint configured to restrain a thumb of the wearer, and a plurality of artificial digits configured to move in a manner to simulate one or more prosthetic fingers and a prosthetic thumb of a prosthesis. The first restraint can be attached to a roof plate connected to a base plate and defining a dorsal side of the prosthesis simulator. The second restraint can be attached to a holster connected to the base plate on a palmar side of the prosthesis simulator. Also disclosed herein are methods of using the same.
    Type: Grant
    Filed: September 8, 2021
    Date of Patent: January 9, 2024
    Assignee: Georgia Tech Research Corporation
    Inventors: Bennett Leonard Alterman, William D. Hendrix, John T. Johnson, Perry J. Lee, Lewis A. Wheaton
  • Publication number: 20220076593
    Abstract: Disclosed herein are prosthesis simulator devices comprising a first restraint configured to restrain one or more fingers of a wearer of the simulator, a second restraint configured to restrain a thumb of the wearer, and a plurality of artificial digits configured to move in a manner to simulate one or more prosthetic fingers and a prosthetic thumb of a prosthesis. The first restraint can be attached to a roof plate connected to a base plate and defining a dorsal side of the prosthesis simulator. The second restraint can be attached to a holster connected to the base plate on a palmar side of the prosthesis simulator. Also disclosed herein are methods of using the same.
    Type: Application
    Filed: September 8, 2021
    Publication date: March 10, 2022
    Inventors: Bennett Leonard Alterman, William D. Hendrix, John T. Johnson, Perry J. Lee, Lewis A. Wheaton
  • Patent number: 9962654
    Abstract: The present technology relates to perovskite materials for oxygen storage. In one aspect, the perovskite material includes at least one platinum group metal (PGM) and at least one perovskite compound selected from the group consisting of formula (a): LaxMO3 and formula (b): La(1-y)SryMO3, wherein: M is selected from the group consisting of Co, Cu, Fe, Mn and Ni; x is about 0.7 to about 1.1; and y is 0 to about 0.8, and wherein M, x, and y are independently variable for each one of said perovskite compounds. In one exemplary method, the perovskite materials of the technology are employed to treat automotive exhaust gas. In one embodiment, the perovskite materials are included in the washcoat of an automotive catalytic converter.
    Type: Grant
    Filed: February 16, 2016
    Date of Patent: May 8, 2018
    Assignee: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Gongshin Qi, John T. Johnson, Se H. Oh, Wei Li
  • Publication number: 20170232387
    Abstract: The present technology relates to perovskite materials for oxygen storage. In one aspect, the perovskite material includes at least one platinum group metal (PGM) andat least one perovskite compound selected from the group consisting of formula (a): LaxMO3 and formula (b): La(1-y)SryMO3, wherein: M is selected from the group consisting of Co, Cu, Fe, Mn and Ni; x is about 0.7 to about 1.1; and y is 0 to about 0.8, and wherein M, x, and y are independently variable for each one of said perovskite compounds. In one exemplary method, the perovskite materials of the technology are employed to treat automotive exhaust gas. In one embodiment, the perovskite materials are included in the washcoat of an automotive catalytic converter.
    Type: Application
    Filed: February 16, 2016
    Publication date: August 17, 2017
    Inventors: Gongshin Qi, John T. Johnson, Se H. Oh, Wei Li
  • Patent number: 9708949
    Abstract: An exhaust aftertreatment system for purifying exhaust gases from a compression-ignition engine includes a first exhaust aftertreatment device including an oxidation catalyst and a particulate filter element fluidly coupled to an exhaust outlet of the engine. A second exhaust aftertreatment device includes an ammonia-selective catalytic reduction catalyst fluidly coupled to a downstream outlet of the first exhaust aftertreatment device. A reductant injection system is configured to inject urea reductant into the exhaust gas feedstream between the first exhaust aftertreatment device and the second exhaust aftertreatment device.
    Type: Grant
    Filed: June 14, 2014
    Date of Patent: July 18, 2017
    Assignee: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Gongshin Qi, John T. Johnson, Wei Li
  • Publication number: 20150361848
    Abstract: An exhaust aftertreatment system for purifying exhaust gases from a compression-ignition engine includes a first exhaust aftertreatment device including an oxidation catalyst and a particulate filter element fluidly coupled to an exhaust outlet of the engine. A second exhaust aftertreatment device includes an ammonia-selective catalytic reduction catalyst fluidly coupled to a downstream outlet of the first exhaust aftertreatment device. A reductant injection system is configured to inject urea reductant into the exhaust gas feedstream between the first exhaust aftertreatment device and the second exhaust aftertreatment device.
    Type: Application
    Filed: June 14, 2014
    Publication date: December 17, 2015
    Inventors: GONGSHIN QI, JOHN T. JOHNSON, WEI LI
  • Patent number: 8544292
    Abstract: The present invention provides an air conditioner for a vehicle that includes a closed refrigeration loop. The closed refrigeration loop includes a compressor, a refrigerant-to-coolant heat exchanger, a coolant-to-refrigerant heat exchanger and a refrigerant dryer in series fluid connection with one another. An engine coolant outlet connector is connected to the coolant-to-refrigerant exchanger. A compartment inlet connector connected to the coolant-to-refrigerant heat exchanger. A compartment outlet connector connected to the refrigerant-to-coolant heat exchanger. An engine coolant inlet connector connected to the refrigerant-to-coolant heat exchanger.
    Type: Grant
    Filed: July 10, 2007
    Date of Patent: October 1, 2013
    Assignee: OmniTherm, Inc.
    Inventors: W. James Masters, Douglas W. Fugate, Edwin E. Wilson, John T. Johnson, W. Jason Masters
  • Patent number: 8383293
    Abstract: An electrocatalyst for fuel cell applications includes a catalyst support and a noble metal or noble metal-based alloy catalyst supported upon the catalyst support. The catalyst support characteristically includes a Group IV-VI transition metal silicide with or without the mixing of carbon. A fuel cell incorporating the electrocatalyst into the anode and/or cathode is disclosed. Such fuel cell exhibit improved cycling and operating performance.
    Type: Grant
    Filed: November 22, 2006
    Date of Patent: February 26, 2013
    Assignee: GM Global Technology Operations LLC
    Inventors: Belabbes Merzougui, Jon C. Halalay, John T. Johnson, Gregory C. Garabedian, Michael P. Balogh, Swathy Swathirajan
  • Patent number: 8318466
    Abstract: An immobilized protein catalyst is prepared by applying an adhesive to a polymeric support, applying a layer of a globular protein over the layer of adhesive, binding a crosslinking agent to the protein layer, and binding the protein catalyst by reaction with the crosslinking agent.
    Type: Grant
    Filed: November 25, 2009
    Date of Patent: November 27, 2012
    Assignee: GM Global Technology Operations LLC
    Inventors: Daniel Dziedzic, John T Johnson, Kenneth B Gross
  • Patent number: 8025861
    Abstract: Titanium oxide (usually titanium dioxide) catalyst support particles are doped for electronic conductivity and formed with surface area-enhancing pores for use, for example, in electro-catalyzed electrodes on proton exchange membrane electrodes in hydrogen/oxygen fuel cells. Suitable compounds of titanium and a dopant are dispersed with pore-forming particles in a liquid medium. The compounds are deposited as a precipitate or sol on the pore-forming particles and heated to transform the deposit into crystals of dopant-containing titanium dioxide. If the heating has not decomposed the pore-forming particles, they are chemically removed from the, now pore-enhanced, the titanium dioxide particles.
    Type: Grant
    Filed: March 3, 2010
    Date of Patent: September 27, 2011
    Assignees: GM Global Technology Operations LLC, Administrators of the Tulane Educational Fund
    Inventors: Mei Cai, Yunfeng Lu, Zhiwang Wu, Lee Lizhong Feng, Martin S. Ruthkosky, John T. Johnson, Frederick T. Wagner
  • Patent number: 7959814
    Abstract: The present invention provides a system and method for producing hot water without a flame. The system and method heats water to at least a specified temperature without a flame by providing a source of water and a prime mover, pumping water from the source of water into one or more heat exchangers, pre-heating the water using the one or more heat exchangers, heating the pre-heated water to at least the specified temperature without a flame using a dynamic heat generator driven by the prime mover, using the heated water in the one or more heat exchangers to pre-heat the water and providing the heated water to an output.
    Type: Grant
    Filed: October 13, 2010
    Date of Patent: June 14, 2011
    Assignee: OmniTherm, Inc.
    Inventors: W. James Masters, Douglas W. Fugate, Edwin W. Wilson, John T. Johnson, III, W. Jason Masters
  • Publication number: 20110079561
    Abstract: The present invention provides a system and method for producing hot water without a flame. The system and method heats water to at least a specified temperature without a flame by providing a source of water and a prime mover, pumping water from the source of water into one or more heat exchangers, pre-heating the water using the one or more heat exchangers, heating the pre-heated water to at least the specified temperature without a flame using a dynamic heat generator driven by the prime mover, using the heated water in the one or more heat exchangers to pre-heat the water and providing the heated water to an output.
    Type: Application
    Filed: October 13, 2010
    Publication date: April 7, 2011
    Applicant: OMNITHERM, INC.
    Inventors: W. James Masters, Douglas W. Fugate, Edwin E. Wilson, John T. Johnson, III, W. Jason Masters
  • Patent number: 7866380
    Abstract: The present invention provides a system and method for producing hot water without a flame. The system and method heats water to at least a specified temperature without a flame by providing a source of water and a prime mover, pumping water from the source of water into one or more heat exchangers, pre-heating the water using the one or more heat exchangers, heating the pre-heated water to at least the specified temperature without a flame using a dynamic heat generator driven by the prime mover, using the heated water in the one or more heat exchangers to pre-heat the water and providing the heated water to an output.
    Type: Grant
    Filed: April 5, 2006
    Date of Patent: January 11, 2011
    Assignee: OmniTherm, Inc.
    Inventors: W. James Masters, Douglas W. Fugate, Edwin E. Wilson, John T. Johnson, III, W. Jason Masters
  • Patent number: 7837966
    Abstract: Ozone and, if necessary, water is added to an exhaust gas, such as air, containing hydrogen- and carbon-containing molecules of a pollutant. The exhaust gas is then continually flowed into one or more oxidizing reaction chamber modules. In the reaction chamber(s) the ozone- and water-containing gas is subjected to intense ultraviolet radiation (wavelength of 254 nm) to promote the formation of hydroxyl radicals to oxidize the pollutant molecules to carbon dioxide and water. The continually discharged gas is analyzed for residual ozone and hydrocarbon content and the analytical data used in feedback control of ozone addition and UV radiation intensity.
    Type: Grant
    Filed: February 23, 2005
    Date of Patent: November 23, 2010
    Assignee: GM Global Technology Operations, Inc.
    Inventors: Kenneth B. Gross, Daniel Dziedzic, John T. Johnson
  • Patent number: 7766077
    Abstract: The present invention provides a system, method and apparatus for heating a fluid without a flame. The modular heater (apparatus) that includes an enclosure, a dynamic heat generator disposed within the enclosure, an electric motor disposed within the enclosure, a first fluid connector attached to the enclosure, a second fluid connector attached to the enclosure and an electrical connector attached to the enclosure. The electric motor drives the dynamic heat generator to heat the fluid to a specified temperature without a flame. The first fluid connector connects the dynamic heat generator to a fluid source. The second fluid connector connects the dynamic heat generator to a fluid storage. The electrical connector connects the electric motor to a power source.
    Type: Grant
    Filed: April 8, 2007
    Date of Patent: August 3, 2010
    Assignee: OmniTherm, Inc.
    Inventors: W. James Masters, Douglas W. Fugate, Edwin E. Wilson, John T. Johnson, III, W. Jason Masters
  • Publication number: 20100160153
    Abstract: Titanium oxide (usually titanium dioxide) catalyst support particles are doped for electronic conductivity and formed with surface area-enhancing pores for use, for example, in electro-catalyzed electrodes on proton exchange membrane electrodes in hydrogen/oxygen fuel cells. Suitable compounds of titanium and a dopant are dispersed with pore-forming particles in a liquid medium. The compounds are deposited as a precipitate or sol on the pore-forming particles and heated to transform the deposit into crystals of dopant-containing titanium dioxide.
    Type: Application
    Filed: March 3, 2010
    Publication date: June 24, 2010
    Applicants: GM GLOBAL TECHNOLOGY OPERATIONS, INC., Administrators Of The Tulane Education Fund
    Inventors: Mei Cai, Yunfeng Lu, Zhiwang Wu, Lee Lizhong Feng, Martin S. Ruthkosky, John T. Johnson, Frederick T. Wagner
  • Publication number: 20100068784
    Abstract: An immobilized protein catalyst is prepared by applying an adhesive to a polymeric support, applying a layer of a globular protein over the layer of adhesive, binding a crosslinking agent to the protein layer, and binding the protein catalyst by reaction with the crosslinking agent.
    Type: Application
    Filed: November 25, 2009
    Publication date: March 18, 2010
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS, INC.
    Inventors: Daniel Dziedzic, John T. Johnson, Kenneth B. Gross
  • Patent number: 7642076
    Abstract: An immobilized protein catalyst is prepared by applying an adhesive to a polymeric support, applying a layer of a globular protein over the layer of adhesive, binding a crosslinking agent to the protein layer, and binding the protein catalyst by reaction with the crosslinking agent.
    Type: Grant
    Filed: May 7, 2004
    Date of Patent: January 5, 2010
    Assignee: GM Global Technology Operations, Inc.
    Inventors: Daniel Dziedzic, John T Johnson, Kenneth B Gross