Patents by Inventor John T. Wetherell

John T. Wetherell has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220208091
    Abstract: Local passive matrix displays and methods of operation are described. In an embodiment, the display includes a pixel driver chip coupled with a matrix of rows and columns of LEDs. The pixel driver chips may be arranged in rows across the display with separate portions to operate separate matrices of LEDs.
    Type: Application
    Filed: January 14, 2022
    Publication date: June 30, 2022
    Inventors: Derek K. Shaeffer, Mahdi Farrokh Baroughi, Xiaofeng Wang, Sam S. Li, John T. Wetherell, Henry C. Jen, Xiang Lu, Hasan Akyol, Hopil Bae, Xiang Fang, Hjalmar Edzer Ayco Huitema, Tore Nauta
  • Publication number: 20220101772
    Abstract: An electronic device may include an electronic display panel having multiple display pixels for displaying an image based on analog voltage signals. The electronic device may also include interpolation circuitry to generate the analog voltage signals based on digital image data corresponding to the image. The interpolation circuitry may also receive analog reference voltages and interpolate between sets of the analog reference voltages to generate intermediate voltages, which may be a part of the analog voltage signals. Interpolating between the sets analog reference voltages may include performing a first level interpolation of a first set of the analog reference voltages to generate a first intermediate voltage and performing a second level interpolation of a second set of the analog reference voltages to generate a second intermediate voltage, wherein the first level interpolation is different from the second level interpolation.
    Type: Application
    Filed: July 14, 2021
    Publication date: March 31, 2022
    Inventors: John T. Wetherell, Mahdi Farrokh Baroughi, Jaeyoung Kang, Shingo Hatanaka, Hasan Akyol, Hopil Bae
  • Publication number: 20220101790
    Abstract: Systems and methods may reduce or eliminate image artifacts due to a defective pixel of an electronic display. An electronic display may include pixels that respectively include a self-emissive element, pixel drive circuitry that supplies a pixel drive current to drive the self-emissive element, and signal routing circuitry that reduces or eliminates a visual artifact due to a defective pixel among the pixels. The signal routing circuitry may do this by turning off the self-emissive element, supplying image data from the pixel drive circuitry to a first adjacent pixel, or receiving image data from other pixel drive circuitry from the first adjacent pixel or a second adjacent pixel.
    Type: Application
    Filed: September 10, 2021
    Publication date: March 31, 2022
    Inventors: John T. Wetherell, Cheuk Chi Lo, Chun-Yao Huang, Lingtao Wang, Derek Keith Shaeffer, Henry C. Jen, Hasan Akyol, Xuebei Yang, Chung-Lun Edwin Hsu, Patrick Bryce Bennett, Chun-Ming Tang, Yingkan Lin, Sheng Zhang, Chaohao Wang, Runjie Xu, Shingo Hatanaka
  • Publication number: 20220076599
    Abstract: Embodiments disclosed herein provide systems and methods for testing and repairing various aspects of an electronic display. The electronic display includes a reference array and an active array. The electronic display also includes test circuitry used to test individual or any combination of pixels of the electronic display. Switches may be disposed between the pixels and the test circuitry to be to repair the various components of the electronic display.
    Type: Application
    Filed: August 9, 2021
    Publication date: March 10, 2022
    Inventors: Hasan Akyol, Xuebei Yang, Chung-Lun Edwin Hsu, Henry C. Jen, John T. Wetherell
  • Patent number: 11263963
    Abstract: Local passive matrix displays and methods of operation are described. In an embodiment, the display includes a pixel driver chip coupled with a matrix of rows and columns of LEDs. The pixel driver chips may be arranged in rows across the display with separate portions to operate separate matrices of LEDs.
    Type: Grant
    Filed: February 11, 2019
    Date of Patent: March 1, 2022
    Assignee: Apple Inc.
    Inventors: Derek K. Shaeffer, Mahdi Farrokh Baroughi, Xiaofeng Wang, Sam S. Li, John T. Wetherell, Henry C. Jen, Xiang Lu, Hasan Akyol, Hopil Bae, Xiang Fang, Hjalmar Edzer Ayco Huitema, Tore Nauta
  • Publication number: 20210357063
    Abstract: An integrated touchscreen can include light emitting diodes or organic light emitting diodes (LEDs/OLEDs), display chiplets and touch chiplets disposed in a visible area of the integrated touch screen. For example, the LEDs/OLEDs, display chiplets and touch chiplets can be placed on a substrate by a micro-transfer tool. The integrated touchscreen can also include electrodes disposed in the visible area of the integrated touch screen. The electrodes can be capable of providing display functionality via the one or more display chiplets during display operation (e.g., operating as cathode terminals of the LEDs during the display operation) and capable of providing touch functionality via the touch chiplets during touch operation (e.g., touch node electrodes can be formed from groups of the electrodes and sensed). In some examples, the touch node electrodes can be formed and coupled to touch chiplets via the display chiplets.
    Type: Application
    Filed: July 23, 2021
    Publication date: November 18, 2021
    Inventors: Christian M. SAUER, Christoph H. KRAH, Derek K. SHAEFFER, Hasan AKYOL, Henry C. JEN, Hopil BAE, John T. WETHERELL, Thierry S. DIVEL, Xiang LU
  • Patent number: 11176888
    Abstract: A system includes a pixel that emits light based on a signal provided to the pixel. The system may also include a buffer circuit having a differential pair stage, a cascade stage, and an output stage. The differential pair stage may receive a common mode voltage signal via a first switch in response to the first switch receiving a first signal that causes the first switch to close. The differential pair stage may couple a capacitor to the output stage via a second switch that operate based on a second signal, such that the capacitor reduces an offset provided by one or more circuit components in the differential pair stage, the cascade stage, the output stage, or any combination thereof. The differential pair stage may output the common mode voltage to the pixel via the output stage in response to the first signal being present.
    Type: Grant
    Filed: June 18, 2020
    Date of Patent: November 16, 2021
    Assignee: Apple Inc.
    Inventors: Shingo Hatanaka, Derek Keith Shaeffer, John T. Wetherell, Nobutaka Shimamura, Yuichi Okuda, Jaeyoung Kang
  • Patent number: 11073927
    Abstract: An integrated touchscreen can include light emitting diodes or organic light emitting diodes (LEDs/OLEDs), display chiplets and touch chiplets disposed in a visible area of the integrated touch screen. For example, the LEDs/OLEDs, display chiplets and touch chiplets can be placed on a substrate by a micro-transfer tool. The integrated touchscreen can also include electrodes disposed in the visible area of the integrated touch screen. The electrodes can be capable of providing display functionality via the one or more display chiplets during display operation (e.g., operating as cathode terminals of the LEDs during the display operation) and capable of providing touch functionality via the touch chiplets during touch operation (e.g., touch node electrodes can be formed from groups of the electrodes and sensed). In some examples, the touch node electrodes can be formed and coupled to touch chiplets via the display chiplets.
    Type: Grant
    Filed: July 19, 2019
    Date of Patent: July 27, 2021
    Assignee: Apple Inc.
    Inventors: Christian M. Sauer, Christoph H. Krah, Derek K. Shaeffer, Hasan Akyol, Henry C. Jen, Hopil Bae, John T. Wetherell, Thierry S. Divel, Xiang Lu
  • Publication number: 20210056904
    Abstract: A system includes a pixel that emits light based on a signal provided to the pixel. The system may also include a buffer circuit having a differential pair stage, a cascade stage, and an output stage. The differential pair stage may receive a common mode voltage signal via a first switch in response to the first switch receiving a first signal that causes the first switch to close. The differential pair stage may couple a capacitor to the output stage via a second switch that operate based on a second signal, such that the capacitor reduces an offset provided by one or more circuit components in the differential pair stage, the cascade stage, the output stage, or any combination thereof. The differential pair stage may output the common mode voltage to the pixel via the output stage in response to the first signal being present.
    Type: Application
    Filed: June 18, 2020
    Publication date: February 25, 2021
    Inventors: Shingo Hatanaka, Derek Keith Shaeffer, John T. Wetherell, Nobutaka Shimamura, Yuichi Okuda, Jaeyoung Kang
  • Publication number: 20210056930
    Abstract: An electronic device may include an electronic display having multiple display pixels. The display pixels may illuminate at a target luminance based at least in part on a first analog voltage signal. The electronic device may also include an electrical bus configured to generate multiple analog voltage signals including the first analog voltage signal, which is output on an output of the electrical bus. The electrical bus may include a digital to analog converter to generate at least some of the analog voltage signals and multiple output buffers to buffer the analog voltage signals. The outputs may be buffered by an output buffer of the output buffers.
    Type: Application
    Filed: July 14, 2020
    Publication date: February 25, 2021
    Inventors: Jaeyoung Kang, Jesse Aaron Richmond, Mahdi Farrokh Baroughi, Hopil Bae, John T. Wetherell, Kingsuk Brahma, Yuichi Okuda, Shingo Hatanaka, Baris Cagdaser, Myungjoon Choi, Jie Won Ryu, Hyunwoo Nho, Yafei Bi, Wei H. Yao, Henry C. Jen, Derek Keith Shaeffer
  • Publication number: 20200033979
    Abstract: An integrated touchscreen can include light emitting diodes or organic light emitting diodes (LEDs/OLEDs), display chiplets and touch chiplets disposed in a visible area of the integrated touch screen. For example, the LEDs/OLEDs, display chiplets and touch chiplets can be placed on a substrate by a micro-transfer tool. The integrated touchscreen can also include electrodes disposed in the visible area of the integrated touch screen. The electrodes can be capable of providing display functionality via the one or more display chiplets during display operation (e.g., operating as cathode terminals of the LEDs during the display operation) and capable of providing touch functionality via the touch chiplets during touch operation (e.g., touch node electrodes can be formed from groups of the electrodes and sensed). In some examples, the touch node electrodes can be formed and coupled to touch chiplets via the display chiplets.
    Type: Application
    Filed: July 19, 2019
    Publication date: January 30, 2020
    Inventors: Christian M. SAUER, Christoph H. KRAH, Derek K. SHAEFFER, Hasan AKYOL, Henry C. JEN, Hopil BAE, John T. WETHERELL, Thierry S. DIVEL, Xiang LU
  • Publication number: 20190347985
    Abstract: Local passive matrix displays and methods of operation are described. In an embodiment, the display includes a pixel driver chip coupled with a matrix of rows and columns of LEDs. The pixel driver chips may be arranged in rows across the display with separate portions to operate separate matrices of LEDs.
    Type: Application
    Filed: February 11, 2019
    Publication date: November 14, 2019
    Inventors: Derek K. Shaeffer, Mahdi Farrokh Baroughi, Xiaofeng Wang, Sam S. Li, John T. Wetherell, Henry C. Jen, Xiang Lu, Hasan Akyol, Hopil Bae, Xiang Fang, Hjalmar Edzer Ayco Huitema, Tore Nauta
  • Patent number: 5557242
    Abstract: A dielectric absorption compensation circuit (300) provides an equivalent and opposite impedance to a parasitic impedance of an external capacitive load (414). The dielectric absorption compensation circuit (300) reduces lock time in a phase lock loop circuit (400) which uses an RC filter (410) including the capacitive load (414).
    Type: Grant
    Filed: May 22, 1995
    Date of Patent: September 17, 1996
    Assignee: Motorola, Inc.
    Inventor: John T. Wetherell