Patents by Inventor John Tellkamp

John Tellkamp has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20110008936
    Abstract: A packaged surface-mount semiconductor device has the outer, un-encapsulated lead segments structured in five adjoining portions: The first portion protrudes from the encapsulation about horizontally; the second portion forms a convex bend downwardly; the third portion is approximately straight downwardly; the fourth portion forms a concave bend upwardly; and the fifth portion is straight horizontally. Each segment has across the width a first groove in the third portion, either on the bottom surface or on the top surface. Preferably, the groove is about 2 leadframe thicknesses vertically over the bottom surface of the fifth lead portion. When stamped, the groove may have an angular outline about 5 and 50 ?m deep; when etched, the groove may have an approximately semicircular outline about 50 to 125 ?m deep. A second groove may be located in the second segment portion; a third groove may be located in the transition region from the third to the fourth segment portions.
    Type: Application
    Filed: September 20, 2010
    Publication date: January 13, 2011
    Applicant: TEXAS INSTRUMENTS INCORPORATED
    Inventor: John TELLKAMP
  • Patent number: 7821111
    Abstract: A packaged surface-mount semiconductor device has the outer, un-encapsulated lead segments structured in five adjoining portions: The first portion protrudes from the encapsulation about horizontally; the second portion forms a convex bend downwardly; the third portion is approximately straight downwardly; the fourth portion forms a concave bend upwardly; and the fifth portion is straight horizontally. Each segment has across the width a first groove in the third portion, either on the bottom surface or on the top surface. Preferably, the groove is about 2 leadframe thicknesses vertically over the bottom surface of the fifth lead portion. When stamped, the groove may have an angular outline about 5 and 50 ?m deep; when etched, the groove may have an approximately semicircular outline about 50 to 125 ?m deep. A second groove may be located in the second segment portion; a third groove may be located in the transition region from the third to the fourth segment portions.
    Type: Grant
    Filed: October 5, 2007
    Date of Patent: October 26, 2010
    Assignee: Texas Instruments Incorporated
    Inventor: John Tellkamp
  • Publication number: 20090091007
    Abstract: A packaged surface-mount semiconductor device has the outer, un-encapsulated lead segments structured in five adjoining portions: The first portion protrudes from the encapsulation about horizontally; the second portion forms a convex bend downwardly; the third portion is approximately straight downwardly; the fourth portion forms a concave bend upwardly; and the fifth portion is straight horizontally. Each segment has across the width a first groove in the third portion, either on the bottom surface or on the top surface. Preferably, the groove is about 2 leadframe thicknesses vertically over the bottom surface of the fifth lead portion. When stamped, the groove may have an angular outline about 5 and 50 ?m deep; when etched, the groove may have an approximately semicircular outline about 50 to 125 ?m deep. A second groove may be located in the second segment portion; a third groove may be located in the transition region from the third to the fourth segment portions.
    Type: Application
    Filed: October 5, 2007
    Publication date: April 9, 2009
    Applicant: TEXAS INSTRUMENTS INCORPORATED
    Inventor: John Tellkamp
  • Publication number: 20080014757
    Abstract: A semiconductor device has a leadframe with a structure made of a base metal (105), wherein the structure consists of a chip mount pad (302) and a plurality of lead segments (303). Covering the base metal are, consecutively, a continuous nickel layer (201) on the base metal, a layer of palladium on the nickel, wherein the palladium layer (203) on the chip side of the structure is thicker than the palladium layer (202) opposite the chip, and a gold layer (204) on the palladium layer (202) opposite the chip. A semiconductor chip (310) is attached to the chip mount pad and conductive connections (312) span from the chip to the lead segments. Polymeric encapsulation compound (320) covers the chip, the connections, and portions of the lead segments, but leaves other segment portions available for solder reflow attachment to external parts.
    Type: Application
    Filed: July 9, 2007
    Publication date: January 17, 2008
    Applicant: TEXAS INSTRUMENTS INCORPORATED
    Inventor: John Tellkamp
  • Publication number: 20070120233
    Abstract: A semiconductor device has a leadframe with a structure made of a base metal (105), wherein the structure consists of a chip mount pad (302) and a plurality of lead segments (303). Covering the base metal are, consecutively, a continuous nickel layer (201) on the base metal, a layer of palladium on the nickel, wherein the palladium layer (203) on the chip side of the structure is thicker than the palladium layer (202) opposite the chip, and a gold layer (204) on the palladium layer (202) opposite the chip. A semiconductor chip (310) is attached to the chip mount pad and conductive connections (312) span from the chip to the lead segments. Polymeric encapsulation compound (320) covers the chip, the connections, and portions of the lead segments, but leaves other segment portions available for solder reflow attachment to external parts.
    Type: Application
    Filed: November 30, 2005
    Publication date: May 31, 2007
    Inventor: John Tellkamp
  • Publication number: 20070092999
    Abstract: A method of reducing a likelihood that a die pad will be delaminated from a die in an integrated circuit die package for a structure design during an attachment of a heat sink member to the die pad using solder, is provided. A sample structure of the structure design is evaluated to determine whether a volume of last solidification for the solder is centrally located with respect to the die pad and is located at or near an interface of the solder and the die pad. If the last solidification volume is centrally located and is located at or near the interface of the solder and the die pad, and if the die pad is delaminated from the die, the structure design is modified so that less metal of the heat sink member is centrally located than before the modifying.
    Type: Application
    Filed: December 21, 2006
    Publication date: April 26, 2007
    Applicant: TEXAS INSTRUMENTS INCORPORATED
    Inventor: John Tellkamp
  • Publication number: 20070018304
    Abstract: An integrated circuit chip which has a plurality of pads and non-reflowable contact members to be connected by reflow attachment to external parts. Each of these contact members has a height-to-diameter ratio and uniform diameter favorable for absorbing strain under thermo-mechanical stress. The members have a solderable surface on each end and a layer of reflowable material on each end. Each member is solder-attached at one end to a chip contact pad, while the other end of each member is operable for reflow attachment to external parts.
    Type: Application
    Filed: September 6, 2006
    Publication date: January 25, 2007
    Applicant: Texas Instruments Incorporated
    Inventors: John Tellkamp, Akira Matsunami
  • Publication number: 20060156080
    Abstract: According to one embodiment of the present invention, a method for detecting a defect in an integrated circuit using an optimized power pulse includes applying a first pulse of power to a first integrated circuit for an optimized pulse duration. The optimized pulse duration is determined as a function of a difference in temperature between a second, defective integrated circuit and a third, non-defective integrated circuit. The temperature of the first integrated circuit is measured after the first pulse of power is applied to the first integrated circuit for the optimized pulse duration, and a determination is made as to whether the first integrated circuit is defective based on the temperature of the first integrated circuit.
    Type: Application
    Filed: December 10, 2004
    Publication date: July 13, 2006
    Inventors: John Tellkamp, Sandra Horton
  • Publication number: 20060019418
    Abstract: A method of reducing a likelihood that a die pad will be delaminated from a die in an integrated circuit die package for a structure design during an attachment of a heat sink member to the die pad using solder, is provided. A sample structure of the structure design is evaluated to determine whether a volume of last solidification for the solder is centrally located with respect to the die pad and is located at or near an interface of the solder and the die pad. If the last solidification volume is centrally located and is located at or near the interface of the solder and the die pad, and if the die pad is delaminated from the die, the structure design is modified so that less metal of the heat sink member is centrally located than before the modifying.
    Type: Application
    Filed: July 22, 2004
    Publication date: January 26, 2006
    Inventor: John Tellkamp