Patents by Inventor John Thomas Vaughan, Jr.

John Thomas Vaughan, Jr. has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11864863
    Abstract: An exemplary system, method, and computer-accessible medium for generating a particular image which can be a quantitative image(s) of at least one section(s) of a patient(s) or (ii) a non-synthetic contrast image(s) of the section(s) of the patient(s), can include, for example, generating a first magnetic resonance (MR) signal and detecting the first MR signal to patient(s), receiving a second MR signal from the patient(s) that can be based on the first MR signal, and generating the particular image(s) based on the second MR signal. The first MR signal can be a configured MR signal. The configured MR signal can be configured for a particular contrast. The first MR signal can have a constant signal intensity. The first MR signal can be generated based on a degree of a plurality of flip angles that maintains the constant signal intensity. A degree of flip angles can be selected for the first MR signal based on the particular contrast.
    Type: Grant
    Filed: September 15, 2021
    Date of Patent: January 9, 2024
    Assignee: THE TRUSTEES OF COLUMBIA UNIVERSITY IN THE CITY OF NEW YORK
    Inventors: John Thomas Vaughan, Jr., Sairam Geethanath, Sachin Jambawalikar, Pavan Poojar, Enlin Qian
  • Publication number: 20220076460
    Abstract: An exemplary system, method, and computer-accessible medium for generating a Cartesian equivalent image(s) of a portion(s) of a patient(s), can include, for example, receiving non-Cartesian sample information based on a magnetic resonance imaging (MRI) procedure of the portion(s) of the patient(s). and automatically generating the Cartesian equivalent image(s) from the non-Cartesian sample information using a deep learning procedure(s). The non-Cartesian sample information can be Fourier domain information. The non-Cartesian sample information can be undersampled non-Cartesian sample information. The MRI procedure can include an ultra-short echo time (UTE) pulse sequence The UTE pulse sequence can include a delay(s) and a spoiling gradient. The Cartesian equivalent image(s) can be generated by reconstructing the Cartesian equivalent image(s).
    Type: Application
    Filed: September 15, 2021
    Publication date: March 10, 2022
    Applicant: The Trustees of Columbia University in the City of New York
    Inventors: JOHN THOMAS VAUGHAN, JR., SAIRAM GEETHANATH, PEIDONG HE
  • Publication number: 20220071490
    Abstract: An exemplary system, method, and computer-accessible medium for generating a particular image which can be a quantitative image(s) of at least one section(s) of a patient(s) or (ii) a non-synthetic contrast image(s) of the section(s) of the patient(s), can include, for example, generating a first magnetic resonance (MR) signal and directing the first MR signal to patient(s), receiving a second MR signal from the patient(s) that can be based on the first MR signal, and generating the particular image(s) based on the second MR signal. The first MR signal can be a configured MR signal. The configured MR signal can be configured for a particular contrast. The first MR signal can have a constant signal intensity. The first MR signal can be generated based on a degree of a plurality of flip angles that maintains the constant signal intensity.
    Type: Application
    Filed: September 15, 2021
    Publication date: March 10, 2022
    Applicant: The Trustees of Columbia University in the City of New York
    Inventors: JOHN THOMAS VAUGHAN, JR., SAIRAM GEETHANATH, SACHIN JAMBAWALIKAR, Pavan POOJAR, Enlin QIAN
  • Publication number: 20210177261
    Abstract: Exemplary system, method and computer-accessible medium for remotely initiating a medical imaging scan(s) of a patient(s), can include, for example, receiving, over a network, encrypted first information related to first parameters of the patient(s), determining second information related to image acquisition second parameters based on the first information, generating an imaging sequence(s) based on the second information, and initiating, remotely from the patient(s), the medical imaging scan(s) based on the imaging sequence(s). The medical imaging scan(s) can be a magnetic resonance imaging (“MRI”) sequence(s). The image acquisition second parameters can be MRI acquisition parameters, and the imaging sequence(s) can be a gradient recalled echo (“GRE”) pulse sequence(s).
    Type: Application
    Filed: February 8, 2021
    Publication date: June 17, 2021
    Inventors: Sairam GEETHANATH, Keerthi SRAVAN RAVI, John Thomas Vaughan, JR.
  • Publication number: 20210166384
    Abstract: Exemplary system, method, and computer-accessible medium for generating a magnetic resonance (MR) tissue fingerprint training network(s) can be provided, using which it is possible to, for example, receive first information related to a MR image(s) of a portion(s) of a phantom(s), partition the first information into a plurality of patches, and generate the MR tissue fingerprint training network(s) by applying a convolutional neural network(s) to the patches. The convolutional neural network(s) can be a fully convolutional neural network(s). Each of the patches can be a same size. The patches can be overlapping patches. A size of the patches can be 3×3 pixels. The MR tissue fingerprint training network can be generated based on float values for each of the patches.
    Type: Application
    Filed: February 8, 2021
    Publication date: June 3, 2021
    Inventors: Sairam GEETHANATH, Rami VANGURI, John Thomas Vaughan, JR., Sachin R. JAMBAWALIKAR
  • Publication number: 20210161394
    Abstract: Exemplary system, method and computer-accessible medium for estimating a temperature on a portion of a body of an anatomical structure(s) can be provided, using which it is possible to, for example, receive a plurality of magnetic resonance (MR) images for the anatomical structure(s), segment the MR images into a plurality of tissue types, mapping the tissue types to a tissue property(ies), and estimate the temperature on the portion of the body of the patient(s) using a neural network. The tissue property(ies) can include a conductivity, a permittivity, or a density. The density can be a mass cell density. The neural network can be a single neural network. The temperature can be estimated based on a set of vectors between points on the portion of the body and a temperature sensor. Each vector can correspond to a tissue thermal profile for each point.
    Type: Application
    Filed: February 8, 2021
    Publication date: June 3, 2021
    Inventors: Sairam GEETHANATH, Julie Marie KABIL, John Thomas Vaughan, Jr.
  • Patent number: 9977101
    Abstract: Apparatus and method that includes amplifiers for transceiver antenna elements, and more specifically to power amplifying an RF (radio frequency) signal using a distributed power amplifier having electronic devices (such as field-effect transistors) that are thermally and/or mechanically connected to each one of a plurality of antenna elements (also called coil elements) to form a hybrid coil-amplifier (e.g., for use in a magnetic-resonance (MR) imaging or spectroscopy machine), and that is optionally adjusted from a remote location, optionally including remotely adjusting its gains, electrical resistances, inductances, and/or capacitances (which controls the magnitude, phase, frequency, spatial profile, and temporal profile of the RF signal)—and, in some embodiments, the components are compatible with, and function in, high fields (such as a magnetic field of up to and exceeding one tesla or even ten tesla or more and/or an electric field of many thousands of volts per meter).
    Type: Grant
    Filed: December 10, 2013
    Date of Patent: May 22, 2018
    Assignees: Regents fo the University of Minnesota, Life Services, LLC
    Inventors: Charles A. Lemaire, John Thomas Vaughan, Jr.
  • Patent number: 9847471
    Abstract: Apparatus and method that includes providing a variable-parameter electrical component in a high-field environment and based on an electrical signal, automatically moving a movable portion of the electrical component in relation to another portion of the electrical component to vary at least one of its parameters. In some embodiments, the moving uses a mechanical movement device (e.g., a linear positioner, rotary motor, or pump). In some embodiments of the method, the electrical component has a variable inductance, capacitance, and/or resistance. Some embodiments include using a computer that controls the moving of the movable portion of the electrical component in order to vary an electrical parameter of the electrical component. Some embodiments include using a feedback signal to provide feedback control in order to adjust and/or maintain the electrical parameter.
    Type: Grant
    Filed: August 26, 2014
    Date of Patent: December 19, 2017
    Assignees: Regents of the University of Minnesota, Life Services, LLC
    Inventors: Carl J. Snyder, John Thomas Vaughan, Jr., Charles A. Lemaire
  • Patent number: 9500727
    Abstract: A system and method for automatically adjusting electrical performance of a radio frequency (RF) coil assembly of a magnetic resonance imaging (MRI) system during a medical imaging process of a subject to control changes in loading conditions of the RF coil caused by the subject during the medical imaging process.
    Type: Grant
    Filed: April 22, 2013
    Date of Patent: November 22, 2016
    Assignee: Regents of the University of Minnesota
    Inventors: Sung-Min Sohn, John Thomas Vaughan, Jr., Anand Gopinath
  • Publication number: 20150338478
    Abstract: Apparatus and method that are more efficient and flexible, and obtain and connect high-power RF transmit signals (TX) to RF-coil devices in an MR machine or other devices and simultaneously receive signals (RX) and separate net receive signals NRX) of interest by subtracting or filtering to remove the subtractable portion of the transmit signal (STX) from the RX and preamplifying the NRX and signal processing the preamplified NRX. In some embodiments, signal processing further removes artifacts of the transmitted signal, e.g., by digitizing the NRX signal, storing the digitized NRX signal in a memory, and performing digital signal processing. In some embodiments, the present invention also includes pre-distorting the TX signals in order to be better able to identify and/or remove the remaining artifacts of the transmitted signal from the NRX signal. This solution also applies to other high-power RF-transmit-antennae signals.
    Type: Application
    Filed: August 4, 2015
    Publication date: November 26, 2015
    Inventors: Scott M. Schillak, John Thomas Vaughan, JR., Charles A. Lemaire, Matthew T. Waks
  • Patent number: 9097769
    Abstract: Apparatus and method that are more efficient and flexible, and obtain and connect high-power RF transmit signals (TX) to RF-coil devices in an MR machine or other devices and simultaneously receive signals (RX) and separate net receive signals NRX) of interest by subtracting or filtering to remove the subtractable portion of the transmit signal (STX) from the RX and preamplifying the NRX and signal processing the preamplified NRX. In some embodiments, signal processing further removes artifacts of the transmitted signal, e.g., by digitizing the NRX signal, storing the digitized NRX signal in a memory, and performing digital signal processing. In some embodiments, the present invention also includes pre-distorting the TX signals in order to be better able to identify and/or remove the remaining artifacts of the transmitted signal from the NRX signal. This solution also applies to other high-power RF-transmit-antennae signals.
    Type: Grant
    Filed: February 28, 2012
    Date of Patent: August 4, 2015
    Assignees: Life Services, LLC, Regents of the University of Minnesota
    Inventors: Scott M. Schillak, John Thomas Vaughan, Jr., Charles A. Lemaire, Matthew T. Waks
  • Patent number: 9043221
    Abstract: Apparatus and method for optimizing different amounts of output products derived from an initial biomass material. The method includes obtaining economic data of costs and availability of raw materials and resources, and prices that would be paid for output products derived, performing calculations to determine an optimum amount of each of the output products; and controlling processes that generate the output products. In some embodiments, the processes convert initial biomass materials into intermediate and output products, an economic engine that obtains economic data relating to costs of initial materials and prices that would be paid for output products derived from the raw materials, and performs calculations to determine an optimum amount of each of the output products, and valves that are controlled by the economic engine to route variable amounts of the initial biomass materials to the processes to obtain a mix of output products that provides an optimum profit.
    Type: Grant
    Filed: May 1, 2012
    Date of Patent: May 26, 2015
    Inventors: John Thomas Vaughan, Jr., William Charles Neely, Bruce J. Rader
  • Publication number: 20150077117
    Abstract: Apparatus and method that includes providing a variable-parameter electrical component in a high-field environment and based on an electrical signal, automatically moving a movable portion of the electrical component in relation to another portion of the electrical component to vary at least one of its parameters. In some embodiments, the moving uses a mechanical movement device (e.g., a linear positioner, rotary motor, or pump). In some embodiments of the method, the electrical component has a variable inductance, capacitance, and/or resistance. Some embodiments include using a computer that controls the moving of the movable portion of the electrical component in order to vary an electrical parameter of the electrical component. Some embodiments include using a feedback signal to provide feedback control in order to adjust and/or maintain the electrical parameter.
    Type: Application
    Filed: August 26, 2014
    Publication date: March 19, 2015
    Inventors: Carl J. Snyder, John Thomas Vaughan, JR., Charles A. Lemaire
  • Patent number: 8854042
    Abstract: A progressive series of five new coils is described. The first coil solves problems of transmit-field inefficiency and inhomogeneity for heart and body imaging, with a close-fitting, 16-channel TEM conformal array design with efficient shield-capacitance decoupling. The second coil progresses directly from the first with automatic tuning and matching, an innovation of huge importance for multi-channel transmit coils. The third coil combines the second, auto-tuned multi-channel transmitter with a 32-channel receiver for best transmit-efficiency, control, receive-sensitivity and parallel-imaging performance. The final two coils extend the innovative technology of the first three coils to multi-nuclear (31P-1H) designs to make practical human-cardiac imaging and spectroscopy possible for the first time at 7 T.
    Type: Grant
    Filed: August 5, 2011
    Date of Patent: October 7, 2014
    Assignees: Life Services, LLC, Regents of the University of Minnesota
    Inventors: John Thomas Vaughan, Jr., Charles A. Lemaire
  • Patent number: 8816566
    Abstract: Apparatus and method that includes providing a variable-parameter electrical component in a high-field environment and based on an electrical signal, automatically moving a movable portion of the electrical component in relation to another portion of the electrical component to vary at least one of its parameters. In some embodiments, the moving uses a mechanical movement device (e.g., a linear positioner, rotary motor, or pump). In some embodiments of the method, the electrical component has a variable inductance, capacitance, and/or resistance. Some embodiments include using a computer that controls the moving of the movable portion of the electrical component in order to vary an electrical parameter of the electrical component. Some embodiments include using a feedback signal to provide feedback control in order to adjust and/or maintain the electrical parameter.
    Type: Grant
    Filed: October 30, 2012
    Date of Patent: August 26, 2014
    Assignees: Life Services, LLC, Regents of the University of Minnesota
    Inventors: Carl J. Snyder, Jr., John Thomas Vaughan, Jr., Charles A. Lemaire
  • Publication number: 20140097846
    Abstract: Apparatus and method that includes amplifiers for transceiver antenna elements, and more specifically to power amplifying an RF (radio frequency) signal using a distributed power amplifier having electronic devices (such as field-effect transistors) that are thermally and/or mechanically connected to each one of a plurality of antenna elements (also called coil elements) to form a hybrid coil-amplifier (e.g., for use in a magnetic-resonance (MR) imaging or spectroscopy machine), and that is optionally adjusted from a remote location, optionally including remotely adjusting its gains, electrical resistances, inductances, and/or capacitances (which controls the magnitude, phase, frequency, spatial profile, and temporal profile of the RF signal)—and, in some embodiments, the components are compatible with, and function in, high fields (such as a magnetic field of up to and exceeding one tesla or even ten tesla or more and/or an electric field of many thousands of volts per meter).
    Type: Application
    Filed: December 10, 2013
    Publication date: April 10, 2014
    Applicants: Regents of the University of Minnesota, Life Services, Inc.
    Inventors: Charles A. Lemaire, John Thomas Vaughan, Jr.
  • Patent number: 8604791
    Abstract: Apparatus and method that includes amplifiers for transceiver antenna elements, and more specifically to power amplifying an RF (radio frequency) signal using a distributed power amplifier having electronic devices (such as field-effect transistors) that are thermally and/or mechanically connected to each one of a plurality of antenna elements (also called coil elements) to form a hybrid coil-amplifier (e.g., for use in a magnetic-resonance (MR) imaging or spectroscopy machine), and that is optionally adjusted from a remote location, optionally including remotely adjusting its gains, electrical resistances, inductances, and/or capacitances (which controls the magnitude, phase, frequency, spatial profile, and temporal profile of the RF signal)—and, in some embodiments, the components are compatible with, and function in, high fields (such as a magnetic field of up to and exceeding one tesla or even ten tesla or more and/or an electric field of many thousands of volts per meter).
    Type: Grant
    Filed: September 9, 2010
    Date of Patent: December 10, 2013
    Assignees: Life Services, LLC, Regents of the University of Minnesota
    Inventors: John Thomas Vaughan, Jr., Charles A. Lemaire
  • Patent number: 8299681
    Abstract: Apparatus and method that includes providing a variable-parameter electrical component in a high-field environment and based on an electrical signal, automatically moving a movable portion of the electrical component in relation to another portion of the electrical component to vary at least one of its parameters. In some embodiments, the moving uses a mechanical movement device (e.g., a linear positioner, rotary motor, or pump). In some embodiments of the method, the electrical component has a variable inductance, capacitance, and/or resistance. Some embodiments include using a computer that controls the moving of the movable portion of the electrical component in order to vary an electrical parameter of the electrical component. Some embodiments include using a feedback signal to provide feedback control in order to adjust and/or maintain the electrical parameter.
    Type: Grant
    Filed: March 8, 2010
    Date of Patent: October 30, 2012
    Assignee: Life Services, LLC
    Inventors: Carl J. Snyder, John Thomas Vaughan, Jr., Charles A. Lemaire
  • Publication number: 20120242550
    Abstract: Apparatus and method that includes providing a variable-parameter electrical component in a high-field environment and based on an electrical signal, automatically moving a movable portion of the electrical component in relation to another portion of the electrical component to vary at least one of its parameters. In some embodiments, the moving uses a mechanical movement device (e.g., a linear positioner, rotary motor, or pump). In some embodiments of the method, the electrical component has a variable inductance, capacitance, and/or resistance. Some embodiments include using a computer that controls the moving of the movable portion of the electrical component in order to vary an electrical parameter of the electrical component. Some embodiments include using a feedback signal to provide feedback control in order to adjust and/or maintain the electrical parameter.
    Type: Application
    Filed: March 8, 2010
    Publication date: September 27, 2012
    Inventors: Carl J. Snyder, John Thomas Vaughan, JR., Charles A. Lemaire
  • Publication number: 20120223709
    Abstract: Apparatus and method that are more efficient and flexible, and obtain and connect high-power RF transmit signals (TX) to RF-coil devices in an MR machine or other devices and simultaneously receive signals (RX) and separate net receive signals NRX) of interest by subtracting or filtering to remove the subtractable portion of the transmit signal (STX) from the RX and preamplifying the NRX and signal processing the preamplified NRX. In some embodiments, signal processing further removes artifacts of the transmitted signal, e.g., by digitizing the NRX signal, storing the digitized NRX signal in a memory, and performing digital signal processing. In some embodiments, the present invention also includes pre-distorting the TX signals in order to be better able to identify and/or remove the remaining artifacts of the transmitted signal from the NRX signal. This solution also applies to other high-power RF-transmit-antennae signals.
    Type: Application
    Filed: February 28, 2012
    Publication date: September 6, 2012
    Inventors: Scott M. Schillak, John Thomas Vaughan, JR., Charles A. Lemaire, Matthew T. Waks