Patents by Inventor John V. Dovey

John V. Dovey has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11555543
    Abstract: A method of using a seal to seal a space between a first structure and a second structure that is movable relative to the first structure, the method includes engaging both the first structure and the second structure with the seal so as to seal the space with the second structure in a first position relative to the first structure, and disengaging the second structure from at least a portion of the seal with the second structure in a second position relative to the first structure so that at least a portion of the space is unsealed, where the second structure swipes across the seal moving between the first position and the second position.
    Type: Grant
    Filed: November 15, 2021
    Date of Patent: January 17, 2023
    Assignee: The Boeing Company
    Inventor: John V. Dovey
  • Patent number: 11312473
    Abstract: A seal is provided. The seal includes a seal panel having lateral sides. The seal also includes a seal locking mechanism coupled to the seal panel. The seal locking mechanism is configured to resiliently move, under impetus of an actuator, between an unbowed position of the seal locking mechanism and a bowed position of the seal locking mechanism.
    Type: Grant
    Filed: May 30, 2019
    Date of Patent: April 26, 2022
    Assignee: The Boeing Company
    Inventors: John V. Dovey, Ethan L. Clemmitt
  • Publication number: 20220074494
    Abstract: A method of using a seal to seal a space between a first structure and a second structure that is movable relative to the first structure, the method includes engaging both the first structure and the second structure with the seal so as to seal the space with the second structure in a first position relative to the first structure, and disengaging the second structure from at least a portion of the seal with the second structure in a second position relative to the first structure so that at least a portion of the space is unsealed, where the second structure swipes across the seal moving between the first position and the second position.
    Type: Application
    Filed: November 15, 2021
    Publication date: March 10, 2022
    Inventor: John V Dovey
  • Patent number: 11209084
    Abstract: A seal for sealing a space between a first structure and second structure. The seal includes a seal base configured to couple with the first structure so as to form a respective seal with the first structure, a resilient lattice body coupled to the seal base, and a cover. The cover includes an inner surface coupled to the resilient lattice body in an opposing relationship relative to the seal base so that the cover moves towards and away from the seal base in a biasing direction of the resilient lattice body, and a bulbous outer surface configured to engage the second structure so as to form a respective seal with the second structure.
    Type: Grant
    Filed: May 30, 2019
    Date of Patent: December 28, 2021
    Assignee: The Boeing Company
    Inventor: John V. Dovey
  • Patent number: 10933972
    Abstract: A composite edge of an aircraft wing includes a composite wing box skin panel, attached to an outward wing spar in an attachment region, and a composite ramp, upon an outer surface of, and co-cured with, the composite wing box skin panel. The composite wing box skin panel has a proximal end and a distal end, with an overhanging edge, with substantially constant thickness and ply count in the attachment region. The composite ramp has a maximum ramp thickness at the distal end, the distal end being set back from the overhanging edge, defining a shoulder on the overhanging edge. A composite wing edge skin panel, having a thickness substantially equal to the maximum ramp thickness, is attached to the composite wing box skin panel at the shoulder and adjacent to the distal end of the ramp.
    Type: Grant
    Filed: November 7, 2018
    Date of Patent: March 2, 2021
    Assignee: THE BOEING COMPANY
    Inventors: Chris J. Foster, John V. Dovey, Gregory M. Santini
  • Publication number: 20200378499
    Abstract: A seal for sealing a space between a first structure and second structure. The seal includes a seal base configured to couple with the first structure so as to form a respective seal with the first structure, a resilient lattice body coupled to the seal base, and a cover. The cover includes an inner surface coupled to the resilient lattice body in an opposing relationship relative to the seal base so that the cover moves towards and away from the seal base in a biasing direction of the resilient lattice body, and a bulbous outer surface configured to engage the second structure so as to form a respective seal with the second structure.
    Type: Application
    Filed: May 30, 2019
    Publication date: December 3, 2020
    Inventor: John V. DOVEY
  • Publication number: 20200377195
    Abstract: A seal is provided. The seal includes a seal panel having lateral sides. The seal also includes a seal locking mechanism coupled to the seal panel. The seal locking mechanism is configured to resiliently move, under impetus of an actuator, between an unbowed position of the seal locking mechanism and a bowed position of the seal locking mechanism.
    Type: Application
    Filed: May 30, 2019
    Publication date: December 3, 2020
    Inventors: John V. DOVEY, Ethan L. CLEMMITT
  • Patent number: 10329009
    Abstract: A composite edge of an aircraft wing includes a composite wing box skin panel, attached to an outward wing spar in an attachment region, and a composite ramp, upon an outer surface of the composite wing box skin panel. The composite wing box skin panel has a proximal end and a distal end, with an overhanging edge, with substantially constant thickness and ply count in the attachment region, the overhanging edge being without any joggle. The composite ramp has a maximum ramp thickness at the distal end, the distal end being set back from the overhanging edge, defining a shoulder, having a relief radius, on the overhanging edge. A composite wing edge skin panel, having a thickness substantially equal to the maximum ramp thickness, is attached to the composite wing box skin panel at the shoulder and adjacent to the distal end of the ramp.
    Type: Grant
    Filed: September 17, 2014
    Date of Patent: June 25, 2019
    Assignee: The Boeing Company
    Inventors: Chris J Foster, Gregory M Santini, John V Dovey
  • Publication number: 20190071165
    Abstract: A composite edge of an aircraft wing includes a composite wing box skin panel, attached to an outward wing spar in an attachment region, and a composite ramp, upon an outer surface of, and co-cured with, the composite wing box skin panel. The composite wing box skin panel has a proximal end and a distal end, with an overhanging edge, with substantially constant thickness and ply count in the attachment region. The composite ramp has a maximum ramp thickness at the distal end, the distal end being set back from the overhanging edge, defining a shoulder on the overhanging edge. A composite wing edge skin panel, having a thickness substantially equal to the maximum ramp thickness, is attached to the composite wing box skin panel at the shoulder and adjacent to the distal end of the ramp.
    Type: Application
    Filed: November 7, 2018
    Publication date: March 7, 2019
    Inventors: Chris J. Foster, John V. Dovey, Gregory M. Santini
  • Publication number: 20160244143
    Abstract: A composite edge of an aircraft wing includes a composite wing box skin panel, attached to an outward wing spar in an attachment region, and a composite ramp, upon an outer surface of, and co-cured with, the composite wing box skin panel. The composite wing box skin panel has a proximal end and a distal end, with an overhanging edge, with substantially constant thickness and ply count in the attachment region. The composite ramp has a maximum ramp thickness at the distal end, is the distal end being set back from the overhanging edge, defining a shoulder on the overhanging edge. A composite wing edge skin panel, having a thickness substantially equal to the maximum ramp thickness, is attached to the composite wing box skin panel at the shoulder and adjacent to the distal end of the ramp.
    Type: Application
    Filed: September 17, 2014
    Publication date: August 25, 2016
    Inventors: Chris J. Foster, Gregory M. Santini, John V. Dovey
  • Patent number: 8567726
    Abstract: Aircraft trailing edge devices, including devices having forwardly positioned hinge lines, and associated methods are disclosed. An aircraft system in accordance with one embodiment of the invention includes a wing and a trailing edge device coupled to the wing. The trailing edge device can be movable relative to the wing between a stowed position and a deployed position, with the trailing edge device having a leading edge, a trailing edge, an upper surface, and a lower surface. The upper surface can have an intersection point with the wing when the trailing edge device is in the stowed position. The motion of the trailing edge device relative to the wing can include rotational motion about a hinge line positioned forward of the intersection point, and a gap can be positioned between the trailing edge of the wing and the leading edge of the trailing edge device when the trailing edge device is in the deployed position.
    Type: Grant
    Filed: October 3, 2011
    Date of Patent: October 29, 2013
    Assignee: The Boeing Company
    Inventors: Douglas S. Lacy, Jan A. Kordel, John V. Dovey, Michael A. Balzer, Seiya Sakurai, Neal V. Huynh
  • Publication number: 20120018588
    Abstract: Aircraft trailing edge devices, including devices having forwardly positioned hinge lines, and associated methods are disclosed. An aircraft system in accordance with one embodiment of the invention includes a wing and a trailing edge device coupled to the wing. The trailing edge device can be movable relative to the wing between a stowed position and a deployed position, with the trailing edge device having a leading edge, a trailing edge, an upper surface, and a lower surface. The upper surface can have an intersection point with the wing when the trailing edge device is in the stowed position. The motion of the trailing edge device relative to the wing can include rotational motion about a hinge line positioned forward of the intersection point, and a gap can be positioned between the trailing edge of the wing and the leading edge of the trailing edge device when the trailing edge device is in the deployed position.
    Type: Application
    Filed: October 3, 2011
    Publication date: January 26, 2012
    Applicant: THE BOEING COMPANY
    Inventors: Douglas S. Lacy, Jan A. Kordel, John V. Dovey, Michael A. Balzer, Seiya Sakurai, Neal V. Huynh
  • Patent number: 8038103
    Abstract: Aircraft trailing edge devices, including devices having forwardly positioned hinge lines, and associated methods are disclosed. An aircraft system in accordance with one embodiment of the invention includes a wing and a trailing edge device coupled to the wing. The trailing edge device can be movable relative to the wing between a stowed position and a deployed position, with the trailing edge device having a leading edge, a trailing edge, an upper surface, and a lower surface. The upper surface can have an intersection point with the wing when the trailing edge device is in the stowed position. The motion of the trailing edge device relative to the wing can include rotational motion about a hinge line positioned forward of the intersection point, and a gap can be positioned between the trailing edge of the wing and the leading edge of the trailing edge device when the trailing edge device is in the deployed position.
    Type: Grant
    Filed: July 2, 2009
    Date of Patent: October 18, 2011
    Assignee: The Boeing Company
    Inventors: Douglas S. Lacy, Jan A. Kordel, John V. Dovey, Michael A. Balzer, Seiya Sakurai, Neal V. Huynh
  • Patent number: 7766282
    Abstract: Trailing edge device catchers and associated systems and methods are disclosed. A system in accordance with one embodiment includes a wing having a wing support, a trailing edge device carried by and movable relative to the wing and having a device support, and a coupling connected between the wing and the trailing edge device. The coupling can include a pivot joint that includes a pivot element aligned along a pivot axis and connected between the wing support and the device support. The coupling can further include an actuator coupled between the wing and the trailing edge device, with the actuator having a first position in which the trailing edge device is stowed, and a second position in which the trailing edge device is deployed, with an air flow gap located between the wing and the trailing edge device when the trailing edge device is in the second position. A cam track is carried by one of the wing and the trailing edge device and has opposing cam track surfaces fixed relative to each other.
    Type: Grant
    Filed: December 11, 2007
    Date of Patent: August 3, 2010
    Assignee: The Boeing Company
    Inventors: Jan A. Kordel, Seiya Sakurai, Michael A. Balzer, John V. Dovey
  • Publication number: 20100170998
    Abstract: Aircraft trailing edge devices, including devices having forwardly positioned hinge lines, and associated methods are disclosed. An aircraft system in accordance with one embodiment of the invention includes a wing and a trailing edge device coupled to the wing. The trailing edge device can be movable relative to the wing between a stowed position and a deployed position, with the trailing edge device having a leading edge, a trailing edge, an upper surface, and a lower surface. The upper surface can have an intersection point with the wing when the trailing edge device is in the stowed position. The motion of the trailing edge device relative to the wing can include rotational motion about a hinge line positioned forward of the intersection point, and a gap can be positioned between the trailing edge of the wing and the leading edge of the trailing edge device when the trailing edge device is in the deployed position.
    Type: Application
    Filed: July 2, 2009
    Publication date: July 8, 2010
    Applicant: The Boeing Company
    Inventors: Douglas S. Lacy, Jan A. Kordel, John V. Dovey, Michael A. Balzer, Seiya Sakurai, Neal V. Huynh
  • Patent number: 7708231
    Abstract: Aircraft trailing edge devices, including devices having forwardly positioned hinge lines, and associated methods are disclosed. An aircraft system in accordance with one embodiment of the invention includes a wing and a trailing edge device coupled to the wing. The trailing edge device can be movable relative to the wing between a stowed position and a deployed position, with the trailing edge device having a leading edge, a trailing edge, an upper surface, and a lower surface. The upper surface can have an intersection point with the wing when the trailing edge device is in the stowed position. The motion of the trailing edge device relative to the wing can include rotational motion about a hinge line positioned forward of the intersection point, and a gap can be positioned between the trailing edge of the wing and the leading edge of the trailing edge device when the trailing edge device is in the deployed position.
    Type: Grant
    Filed: November 21, 2005
    Date of Patent: May 4, 2010
    Assignee: The Boeing Company
    Inventors: Douglas S. Lacy, Jan A. Kordel, John V. Dovey, Michael A. Balzer, Seiya Sakurai, Neal V. Huynh
  • Publication number: 20090146016
    Abstract: Trailing edge device catchers and associated systems and methods are disclosed. A system in accordance with one embodiment includes a wing having a wing support, a trailing edge device carried by and movable relative to the wing and having a device support, and a coupling connected between the wing and the trailing edge device. The coupling can include a pivot joint that includes a pivot element aligned along a pivot axis and connected between the wing support and the device support. The coupling can further include an actuator coupled between the wing and the trailing edge device, with the actuator having a first position in which the trailing edge device is stowed, and a second position in which the trailing edge device is deployed, with an air flow gap located between the wing and the trailing edge device when the trailing edge device is in the second position. A cam track is carried by one of the wing and the trailing edge device and has opposing cam track surfaces fixed relative to each other.
    Type: Application
    Filed: December 11, 2007
    Publication date: June 11, 2009
    Applicant: The Boeing Company
    Inventors: Jan A. Kordel, Seiya Sakurai, Michael A. Balzer, John V. Dovey
  • Patent number: 6702232
    Abstract: A multi-section aircraft door includes a sliding joint permitting a lower door section displacement into the flight deck area. The door includes an upper door section having a lower edge. The lower edge is connectably joined to an upper member of a two-member sliding joint. The upper member slidably joins to a sliding joint lower member. The sliding joint lower member is connectably joined to a lower door section upper edge. The upper member and the lower member of the two-member sliding joint include paired apertured embossments. A frangible pin slidably mates in each apertured embossment pair. A lever and cam form a frangible pin removal assembly. The lever is held in a normally upright position by either a spring device or a clevis and pin assembly. A rotating clasp or a ball détente system can also replace the frangible pin/apertured embossment and cam/lever.
    Type: Grant
    Filed: September 24, 2002
    Date of Patent: March 9, 2004
    Assignee: The Boeing Company
    Inventors: John V. Dovey, Scott P. Kube, John A. Pechacek, Rolando G. Taguinod
  • Publication number: 20030189131
    Abstract: A flight deck door for an aircraft that is both ballistic resistant and intruder proof. The flight deck door includes a laminated ballistic resistant material which can also provide intruder resistant properties. The ballistic resistant or armor material can be laminated onto a core to provide additional rigidity to the flight deck door. The core also increases the rigidity of the flight deck door and increases intruder resistance. Also sound dampening layers may be added to the door.
    Type: Application
    Filed: January 3, 2003
    Publication date: October 9, 2003
    Inventors: Michael J. Cloud, John V. Dovey, James J. Kunda
  • Publication number: 20030189130
    Abstract: A multi-section aircraft door includes a sliding joint permitting a lower door section displacement into the flight deck area. The door includes an upper door section having a lower edge. The lower edge is connectably joined to an upper member of a two-member sliding joint. The upper member slidably joins to a sliding joint lower member. The sliding joint lower member is connectably joined to a lower door section upper edge. The upper member and the lower member of the two-member sliding joint include paired apertured embossments. A frangible pin slidably mates in each apertured embossment pair. A lever and cam form a frangible pin removal assembly. The lever is held in a normally upright position by either a spring device or a clevis and pin assembly. A rotating clasp or a ball detente system can also replace the frangible pin/apertured embossment and cam/lever.
    Type: Application
    Filed: September 24, 2002
    Publication date: October 9, 2003
    Inventors: John V. Dovey, Scott P. Kube, John A. Pechacek, Rolando G. Taguinod