Patents by Inventor John Valcore, Jr.

John Valcore, Jr. has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230207267
    Abstract: Systems and methods for compressing data are described. One of the methods includes receiving a plurality of measurement signals from one or more sensors coupled to a radio frequency (RF) transmission path of a plasma tool. The RF transmission path is from an output of an RF generator to an electrode of a plasma chamber. The method includes converting the plurality of measurement signals from an analog form to a digital form to sample data and processing the data to reduce an amount of the data. The amount of the data is compressed to output compressed data. The method includes sending the compressed data to a controller for controlling the plasma tool.
    Type: Application
    Filed: May 10, 2021
    Publication date: June 29, 2023
    Inventors: John Valcore, JR., Travis Joseph Wong, Ying Wu, Sandeep Mudunuri, Bostjan Pust
  • Patent number: 10832979
    Abstract: An iterative etch process includes a plurality of cycles performed in a successive manner on a substrate. Each cycle of the plurality of cycles includes a deposition phase and an activation phase. The deposition phase is performed before the activation phase in each cycle. The deposition phase is defined as a plasma-based process to enable removal of a particular material from a surface of the substrate. The activation phase is defined as a plasma-based process to remove the particular material from the surface of the substrate. One or more feedback control signals are acquired during the iterative etch process, correlated to a condition of the substrate, and analyzed to determine the condition of the substrate. One or more process parameters of the iterative etch process is/are adjusted based on the condition of the substrate as determined by analyzing the one or more feedback control signals.
    Type: Grant
    Filed: February 22, 2018
    Date of Patent: November 10, 2020
    Assignee: Lam Research Corporation
    Inventors: Arthur M. Howald, John Valcore, Jr., Henry Stephen Povolny
  • Patent number: 10432248
    Abstract: A RF control circuit is provided and includes a controller, a divider, and a RF sensor. The controller selects a RF, which is a frequency of a reference LO signal. The divider receives a first RF signal detected in a substrate processing chamber and outputs a second RF signal. The first RF signal is generated by a RF generator and supplied to the substrate processing chamber. The RF sensor includes a lock-in amplifier, which includes: a RF path that receives the second RF signal; a LO path that receives the reference LO signal; a first mixer that generates an IF signal based on the second RF signal and the reference LO signal; and a filter that filters the IF signal. The controller generates a control signal based on the filtered IF signal and transmits the control signal to the RF generator to adjust the first RF signal.
    Type: Grant
    Filed: March 15, 2018
    Date of Patent: October 1, 2019
    Assignee: LAM RESEARCH CORPORATION
    Inventors: Ernest Beauel Hanks, John Valcore, Jr.
  • Publication number: 20190288737
    Abstract: A RF control circuit is provided and includes a controller, a divider, and a RF sensor. The controller selects a RF, which is a frequency of a reference LO signal. The divider receives a first RF signal detected in a substrate processing chamber and outputs a second RF signal. The first RF signal is generated by a RF generator and supplied to the substrate processing chamber. The RF sensor includes a lock-in amplifier, which includes: a RF path that receives the second RF signal; a LO path that receives the reference LO signal; a first mixer that generates an IF signal based on the second RF signal and the reference LO signal; and a filter that filters the IF signal. The controller generates a control signal based on the filtered IF signal and transmits the control signal to the RF generator to adjust the first RF signal.
    Type: Application
    Filed: March 15, 2018
    Publication date: September 19, 2019
    Inventors: Ernest Beauel HANKS, John VALCORE, JR.
  • Publication number: 20190259674
    Abstract: An iterative etch process includes a plurality of cycles performed in a successive manner on a substrate. Each cycle of the plurality of cycles includes a deposition phase and an activation phase. The deposition phase is performed before the activation phase in each cycle. The deposition phase is defined as a plasma-based process to enable removal of a particular material from a surface of the substrate. The activation phase is defined as a plasma-based process to remove the particular material from the surface of the substrate. One or more feedback control signals are acquired during the iterative etch process, correlated to a condition of the substrate, and analyzed to determine the condition of the substrate. One or more process parameters of the iterative etch process is/are adjusted based on the condition of the substrate as determined by analyzing the one or more feedback control signals.
    Type: Application
    Filed: February 22, 2018
    Publication date: August 22, 2019
    Inventors: Arthur M. Howald, John Valcore, JR., Henry Stephen Povolny
  • Patent number: 8890537
    Abstract: An arc detection system includes a radio frequency (RF) signal probe that senses a RF signal at an input of a RF plasma chamber and that generates a signal based on at least one of the voltage, current, and power of the RF signal. A signal analyzer receives the signal, monitors the signal for frequency components that have a frequency greater than or equal to a fundamental frequency of the RF signal, and generates an output signal based on the frequency components. The output signal indicates that an arc is occurring in the RF plasma chamber.
    Type: Grant
    Filed: April 21, 2010
    Date of Patent: November 18, 2014
    Assignee: MKS Instruments, Inc.
    Inventors: John Valcore, Jr., Yufeng Han, Jonathan Smyka, Salvatore Polizzo, Aaron T. Radomski