Patents by Inventor John Valentino

John Valentino has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11914974
    Abstract: According to some embodiments, a system comprises a generator of a truly random signal is connected to an input and feedback device for the purpose of providing a user with real time feedback on the random signal. The user observes a representation of the signal in the process of an external physical event for the purpose of finding a correlation between the random output and what happens during the physical event. In some examples, the system is preferably designed such the system is shielded from all classically known forces such as gravity, physical pressure, motion, electromagnetic fields, humidity, etc. and/or, such classical forces are factored out of the process as much as possible. The system is thus designed to be selectively response to signals from living creatures, in particular, humans.
    Type: Grant
    Filed: November 30, 2020
    Date of Patent: February 27, 2024
    Assignee: Psyleron, Inc.
    Inventors: John Valentino, Herb Mertz, Ian Cook
  • Publication number: 20210255834
    Abstract: According to some embodiments, a system comprises a generator of a truly random signal is connected to an input and feedback device for the purpose of providing a user with real time feedback on the random signal. The user observes a representation of the signal in the process of an external physical event for the purpose of finding a correlation between the random output and what happens during the physical event. In some examples, the system is preferably designed such the system is shielded from all classically known forces such as gravity, physical pressure, motion, electromagnetic fields, humidity, etc. and/or, such classical forces are factored out of the process as much as possible. The system is thus designed to be selectively response to signals from living creatures, in particular, humans.
    Type: Application
    Filed: November 30, 2020
    Publication date: August 19, 2021
    Applicant: PSYLERON, INC.
    Inventors: John Valentino, Herb Mertz, Ian Cook
  • Publication number: 20210094594
    Abstract: A Railroad Snapshot and Playback System and Method is disclosed that can provide a messaging/communication infrastructure configured to generate and route current train related messages for multi-region train routing plans. The types of railroad data being tracked can be organized into one or more domains. A method for railroad snapshot playback can include receiving a plurality of events related to train movements in the rail system; creating a first snapshot that can include the plurality of the events, wherein a number of events in the first snapshot can be based on a snapshot increment; receiving a playback request for a playback state of the rail system; pulling a snapshot and events received after the snapshot based on the playback request; building a state of the rail system using the pulled snapshot and the pulled events; operating controls of the rail system based on the state of the rail system.
    Type: Application
    Filed: May 5, 2020
    Publication date: April 1, 2021
    Applicant: BNSF Railway Company
    Inventors: John Valentino, Len Gagne
  • Patent number: 10896024
    Abstract: According to some embodiments, a system comprises a generator of a truly random signal is connected to an input and feedback device for the purpose of providing a user with real time feedback on the random signal. The user observes a representation of the signal in the process of an external physical event for the purpose of finding a correlation between the random output and what happens during the physical event. In some examples, the system is preferably designed such the system is shielded from all classically known forces such as gravity, physical pressure, motion, electromagnetic fields, humidity, etc. and/or, such classical forces are factored out of the process as much as possible. The system is thus designed to be selectively response to signals from living creatures, in particular, humans.
    Type: Grant
    Filed: December 19, 2017
    Date of Patent: January 19, 2021
    Assignee: PSYLERON, INC.
    Inventors: John Valentino, Herb Mertz, Ian Cook
  • Publication number: 20180285079
    Abstract: According to some embodiments, a system comprises a generator of a truly random signal is connected to an input and feedback device for the purpose of providing a user with real time feedback on the random signal. The user observes a representation of the signal in the process of an external physical event for the purpose of finding a correlation between the random output and what happens during the physical event. In some examples, the system is preferably designed such the system is shielded from all classically known forces such as gravity, physical pressure, motion, electromagnetic fields, humidity, etc. and/or, such classical forces are factored out of the process as much as possible. The system is thus designed to be selectively response to signals from living creatures, in particular, humans.
    Type: Application
    Filed: December 19, 2017
    Publication date: October 4, 2018
    Applicant: PSYLERON, INC.
    Inventors: John Valentino, Herb Mertz
  • Publication number: 20180128926
    Abstract: A low-power wireless ionizing radiation measurement system is present that is intended to be used in a wearable dosimeter for occupational radiation monitoring. The detector element is a custom MOS capacitor that traps holes in proportion to the amount of ionizing radiation incident upon the detector, thus permanently causing a lateral shift in the CV-curve (toward more negative threshold voltage). The circuit measures the capacitance value of several redundant sensors at a given voltage in the depletion region, records this value over time and occasionally transmits the stored values to a base station. From the change in capacitance, the dose that has been delivered can be determined.
    Type: Application
    Filed: January 5, 2018
    Publication date: May 10, 2018
    Inventors: Sean M. Scott, Daniel John Valentino, P. Alexander Walerow, Mark Raymond Salasky, Dimitrios Peroulis
  • Patent number: 9927531
    Abstract: A method and apparatus is disclosed for differentially altering the radiation response across multiple MOSCAP sensors by placing different thin gate materials with different atomic numbers on a series of MOS-based radiation sensors. The secondary electrons created in high-atomic weight materials (such as gold) at lower incident photon energy levels enable a tissue equivalent radiation response and radiations source identification/differentiation. This is a desirable alternative to using filters with different coefficients across a series of MOSCAP radiation sensor which will attenuate the signal and degrade the device form factor. The method and apparatus disclosed achieves the same functionality but with inherent gain instead of attenuation, thus increasing sensitivity. This will improve the minimum resolvable dose for x-rays and low-energy gammas (high-energy gammas will remain the same), and produces a response that can distinguish the energy level of incident radiation photon.
    Type: Grant
    Filed: September 30, 2015
    Date of Patent: March 27, 2018
    Assignee: PURDUE RESEARCH FOUNDATION
    Inventors: Mark Raymond Salasky, Sean M. Scott, P. Alexander Walerow, Daniel John Valentino, Dimitrios Peroulis
  • Patent number: 9858041
    Abstract: According to some embodiments, a system comprises a generator of a truly random signal is connected to an input and feedback device for the purpose of providing a user with real time feedback on the random signal. The user observes a representation of the signal in the process of an external physical event for the purpose of finding a correlation between the random output and what happens during the physical event. In some examples, the system is preferably designed such the system is shielded from all classically known forces such as gravity, physical pressure, motion, electromagnetic fields, humidity, etc. and/or, such classical forces are factored out of the process as much as possible. The system is thus designed to be selectively response to signals from living creatures, in particular, humans.
    Type: Grant
    Filed: July 17, 2015
    Date of Patent: January 2, 2018
    Assignee: PSYLERON, INC.
    Inventors: John Valentino, Herb Mertz, Ian Cook
  • Patent number: 9823358
    Abstract: A low-power wireless ionizing radiation measurement system is provided that is intended to be used in a wearable dosimeter for occupational radiation monitoring.
    Type: Grant
    Filed: September 30, 2015
    Date of Patent: November 21, 2017
    Assignee: PURDUE RESEARCH FOUNDATION
    Inventors: Sean M. Scott, P. Alexander Walerow, Daniel John Valentino
  • Publication number: 20160187492
    Abstract: A low-power wireless ionizing radiation measurement system is present that is intended to be used in a wearable dosimeter for occupational radiation monitoring. An apparatus is provided comprising a switching interface, wherein the switching interface alternates between a first switching state and a second switching state. In the first switching state, a radiation-sensitive metal oxide semiconductor capacitor (MOSCAP) is coupled to an external biasing source. In the second switching state, the radiation-sensitive MOSCAP is coupled with reversed polarity relative to the first switching state to a capacitive readout circuit to thereby allow for high-resolution real-time electronic measurement of a radiation-induced capacitance response.
    Type: Application
    Filed: September 30, 2015
    Publication date: June 30, 2016
    Inventors: Nithin RAGHUNATHAN, Sean M. SCOTT, Dimitrios PEROULIS, Harikrishna RAJABATHER, P. Alexander WALEROW, Daniel John VALENTINO
  • Publication number: 20160187493
    Abstract: A method and apparatus is disclosed for differentially altering the radiation response across multiple MOSCAP sensors by placing different thin gate materials with different atomic numbers on a series of MOS-based radiation sensors. The secondary electrons created in high-atomic weight materials (such as gold) at lower incident photon energy levels enable a tissue equivalent radiation response and radiations source identification/differentiation. This is a desirable alternative to using filters with different coefficients across a series of MOSCAP radiation sensor which will attenuate the signal and degrade the device form factor. The method and apparatus disclosed achieves the same functionality but with inherent gain instead of attenuation, thus increasing sensitivity. This will improve the minimum resolvable dose for x-rays and low-energy gammas (high-energy gammas will remain the same), and produces a response that can distinguish the energy level of incident radiation photon.
    Type: Application
    Filed: September 30, 2015
    Publication date: June 30, 2016
    Inventors: MARK RAYMOND SALASKY, SEAN M. SCOTT, P. ALEXANDER WALEROW, DANIEL JOHN VALENTINO, DIMITRIOS PEROULIS
  • Publication number: 20160187494
    Abstract: A low-power wireless ionizing radiation measurement system is provided that is intended to be used in a wearable dosimeter for occupational radiation monitoring.
    Type: Application
    Filed: September 30, 2015
    Publication date: June 30, 2016
    Inventors: SEAN M. SCOTT, P. ALEXANDER WALEROW, DANIEL JOHN VALENTINO
  • Publication number: 20160187491
    Abstract: A low-power wireless ionizing radiation measurement system is present that is intended to be used in a wearable dosimeter for occupational radiation monitoring. The detector element is a custom MOS capacitor that traps holes in proportion to the amount of ionizing radiation incident upon the detector, thus permanently causing a lateral shift in the CV-curve (toward more negative threshold voltage). The circuit measures the capacitance value of several redundant sensors at a given voltage in the depletion region, records this value over time and occasionally transmits the stored values to a base station. From the change in capacitance, the dose that has been delivered can be determined.
    Type: Application
    Filed: September 30, 2015
    Publication date: June 30, 2016
    Inventors: SEAN M. SCOTT, DANIEL JOHN VALENTINO, P. ALEXANDER WALEROW, MARK RAYMOND SALASKY, DIMITRIOS PEROULIS
  • Publication number: 20160139884
    Abstract: According to some embodiments, a system comprises a generator of a truly random signal is connected to an input and feedback device for the purpose of providing a user with real time feedback on the random signal. The user observes a representation of the signal in the process of an external physical event for the purpose of finding a correlation between the random output and what happens during the physical event. In some examples, the system is preferably designed such the system is shielded from all classically known forces such as gravity, physical pressure, motion, electromagnetic fields, humidity, etc. and/or, such classical forces are factored out of the process as much as possible. The system is thus designed to be selectively response to signals from living creatures, in particular, humans.
    Type: Application
    Filed: July 17, 2015
    Publication date: May 19, 2016
    Applicant: PSYLERON, INC.
    Inventors: John Valentino, Herb Mertz
  • Patent number: 9152381
    Abstract: According to some embodiments, a system comprises a generator of a truly random signal is connected to an input and feedback device for the purpose of providing a user with real time feedback on the random signal. The user observes a representation of the signal in the process of an external physical event for the purpose of finding a correlation between the random output and what happens during the physical event. In some examples, the system is preferably designed such the system is shielded from all classically known forces such as gravity, physical pressure, motion, electromagnetic fields, humidity, etc. and/or, such classical forces are factored out of the process as much as possible. The system is thus designed to be selectively response to signals from living creatures, in particular, humans.
    Type: Grant
    Filed: November 10, 2008
    Date of Patent: October 6, 2015
    Assignee: PSYLERON, INC.
    Inventors: John Valentino, Herb Mertz
  • Patent number: 9013396
    Abstract: A motion capture environment includes at least one sensor-tracker for tracking a location of a tracked object within the motion capture environment and one or more computers collectively operable to generate a virtual reality environment including a virtual control panel having a virtual control that, when actuated, effects a predetermined result in the virtual reality environment; determine a virtual location of the tracked object within the virtual reality environment; and determine when the virtual location of the tracked object coincides with the location of the virtual control to actuate the virtual control. The motion capture environment further includes a display device for displaying the virtual reality environment to an actor within the motion capture environment.
    Type: Grant
    Filed: January 22, 2008
    Date of Patent: April 21, 2015
    Assignee: Textron Innovations Inc.
    Inventors: George Steven Lewis, John Valentino, Christopher Michael Bothwell
  • Patent number: 8615714
    Abstract: A motion capture environment includes a plurality of sensor-trackers for tracking physical locations of a plurality of tracked objects relating to a first simulation within the motion capture environment and for tracking physical locations of a plurality of tracked objects relating to a second simulation, which is different from the first simulation, within the motion capture environment and one or more computers collectively operable to generate a first virtual reality environment corresponding to the first simulation and a second virtual reality environment corresponding to the second simulation.
    Type: Grant
    Filed: January 22, 2008
    Date of Patent: December 24, 2013
    Assignee: Textron Innovations Inc.
    Inventors: George Steven Lewis, John Valentino, Christopher Michael Bothwell
  • Patent number: 8599194
    Abstract: A system includes an analysis system for performing an analysis and a motion capture environment interfaced with the analysis system. The motion capture system includes at least one sensor-tracker for tracking a location of a tracked object within the motion capture environment and one or more computers collectively operable to generate a virtual reality environment corresponding to the analysis.
    Type: Grant
    Filed: January 22, 2008
    Date of Patent: December 3, 2013
    Assignee: Textron Innovations Inc.
    Inventors: George Steven Lewis, John Valentino, Christopher Michael Bothwell
  • Publication number: 20130110895
    Abstract: According to some embodiments, a system comprises a generator of a truly random signal is connected to an input and feedback device for the purpose of providing a user with real time feedback on the random signal. The user observes a representation of the signal in the process of an external physical event for the purpose of finding a correlation between the random output and what happens during the physical event. In some examples, the system is preferably designed such the system is shielded from all classically known forces such as gravity, physical pressure, motion, electromagnetic fields, humidity, etc. and/or, such classical forces are factored out of the process as much as possible. The system is thus designed to be selectively response to signals from living creatures, in particular, humans.
    Type: Application
    Filed: November 10, 2008
    Publication date: May 2, 2013
    Applicant: PSYLERON, INC.
    Inventors: John Valentino, Herb Mertz
  • Publication number: 20110035684
    Abstract: A collaborative virtual reality system includes a first motion capture system and a second motion capture system. The first motion capture system and the second motion capture system configured to interact over a network to produce a single virtual reality environment.
    Type: Application
    Filed: April 17, 2008
    Publication date: February 10, 2011
    Applicant: BELL HELICOPER TEXTRON INC.
    Inventors: George Steven Lewis, John Valentino, II