Patents by Inventor John W. Allison

John W. Allison has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20200223913
    Abstract: Processes for producing and purifying recombinant proteins are disclosed. In particular, the present disclosure provides processes of producing and purifying multi-subunit proteins expressed in yeast or filamentous fungal cells. The production and/or purification of such proteins are monitored for impurities, preferably using lectin binding assays, such that one or more process parameters may be adjusted to maximize the amount of desired recombinant protein and minimize the amount of glycosylated impurities. The processes can also be monitored for other undesired product-associated impurities, such as aggregates and nucleic acids. In exemplary embodiments, the recombinant proteins are multi-subunit proteins, such as antibodies, the host cell is a yeast, such as Pichia pastoris, and the glycosylated impurity is a glycovariant of the desired recombinant polypeptide, such as an N-linked and/or O-linked glycovariant.
    Type: Application
    Filed: January 10, 2020
    Publication date: July 16, 2020
    Inventors: Daniel S. ALLISON, Steven D. DAVIN, Hoa Binh DO, Leon F. GARCIA-MARTINEZ, Geoffrey F. LEE, Ethan W. OJALA, Mark YOUNG, John A. LATHAM
  • Publication number: 20200181230
    Abstract: The present invention is directed to antibodies and antigen binding fragments thereof having binding specificity for PACAP. The antibodies and antigen binding fragments thereof comprise the sequences of the VH, VL, and CDR polypeptides described herein, and the polynucleotides encoding them. Antibodies and antigen binding fragments described herein bind to and/or compete for binding to the same linear or conformational epitope(s) on human PACAP as an anti-PACAP antibody. The invention contemplates conjugates of anti-PACAP antibodies and binding fragments thereof conjugated to one or more functional or detectable moieties. Methods of making said anti-PACAP antibodies and antigen binding fragments thereof are also contemplated.
    Type: Application
    Filed: February 11, 2020
    Publication date: June 11, 2020
    Inventors: Maria-Cristina LOOMIS, Leon F. GARCIA-MARTINEZ, Benjamin H. DUTZAR, Daniel S. ALLISON, Katherine Lee HENDRIX, Ethan W. OJALA, Pei FAN, Jeffrey T.L. SMITH, John A. LATHAM, Charlie KARASEK, Jenny MULLIGAN, Michelle SCALLEY-KIM, Erica STEWART, Vanessa Lisbeth RUBIN, Jens J. BILLGREN
  • Publication number: 20200181229
    Abstract: The present invention is directed to antibodies and antigen binding fragments thereof having binding specificity for PACAP. The antibodies and antigen binding fragments thereof comprise the sequences of the VH, VL, and CDR polypeptides described herein, and the polynucleotides encoding them. Antibodies and antigen binding fragments described herein bind to and/or compete for binding to the same linear or conformational epitope(s) on human PACAP as an anti-PACAP antibody. The invention contemplates conjugates of anti-PACAP antibodies and binding fragments thereof conjugated to one or more functional or detectable moieties. Methods of making said anti-PACAP antibodies and antigen binding fragments thereof are also contemplated.
    Type: Application
    Filed: February 11, 2020
    Publication date: June 11, 2020
    Inventors: Maria-Cristina Loomis, Leon F. Garcia-Martinez, Benjamin H. Dutzar, Daniel S. Allison, Katherine Lee Hendrix, Ethan W. Ojala, Pei Fan, Jeffrey T.L. Smith, John A. Latham, Charlie Karasek, Jenny Mulligan, Michelle Scalley-Kim, Erica Stewart, Vanessa Lisbeth Rubin, Jens J. Billgren
  • Publication number: 20200172612
    Abstract: The present invention is directed to antagonistic antibodies and antigen binding fragments thereof having binding specificity for PACAP. These antibodies inhibit, block or neutralize at least one biological effect associated with PACAP, e.g., vasodilation. In exemplary embodiments these antibodies and antigen binding fragments thereof may comprise specific VH, VL, and CDR polypeptides described herein. In some embodiments these antibodies and antigen binding fragments thereof bind to and/or compete for binding to specific epitope(s) on human PACAP. The invention is further directed to using these antagonistic anti-PACAP antibodies, and binding fragments thereof, for the diagnosis, assessment, and treatment of diseases and disorders associated with PACAP and conditions where antagonism of PACAP-related activities, such as vasodilation, mast cell degranulation, and/or neuronal activation, are therapeutically beneficial, e.g., headache and migraine indications.
    Type: Application
    Filed: February 11, 2020
    Publication date: June 4, 2020
    Inventors: Maria-Cristina LOOMIS, Leon F. GARCIA-MARTINEZ, Benjamin H. DUTZAR, Daniel S. ALLISON, Katherine Lee HENDRIX, Ethan W. OJALA, Pei FAN, Jeffrey T.L. SMITH, John A. LATHAM, Charlie KARASEK, Jenny MULLIGAN, Michelle SCALLEY-KIM, Erica STEWART, Vanessa Lisbeth RUBIN, Jens J. BILLGREN
  • Publication number: 20200165316
    Abstract: The present invention is directed to antibodies and antigen binding fragments thereof having binding specificity for PACAP. The antibodies and antigen binding fragments thereof comprise the sequences of the VH, VL, and CDR polypeptides described herein, and the polynucleotides encoding them. Antibodies and antigen binding fragments described herein bind to and/or compete for binding to the same linear or conformational epitope(s) on human PACAP as an anti-PACAP antibody. The invention contemplates conjugates of anti-PACAP antibodies and binding fragments thereof conjugated to one or more functional or detectable moieties. Methods of making said anti-PACAP antibodies and antigen binding fragments thereof are also contemplated.
    Type: Application
    Filed: February 11, 2020
    Publication date: May 28, 2020
    Inventors: Maria-Cristina LOOMIS, Leon F. GARCIA-MARTINEZ, Benjamin H. DUTZAR, Daniel S. ALLISON, Katherine Lee HENDRIX, Ethan W. OJALA, Pei FAN, Jeffrey T.L. SMITH, John A. LATHAM, Charlie KARASEK, Jenny MULLIGAN, Michelle SCALLEY-KIM, Erica STEWART, Vanessa Lisbeth RUBIN, Jens J. BILLGREN
  • Publication number: 20200079847
    Abstract: The present invention is directed to antagonistic antibodies and antigen binding fragments thereof having binding specificity for PACAP. These antibodies inhibit, block or neutralize at least one biological effect associated with PACAP, e.g., vasodilation. In exemplary embodiments these antibodies and antigen binding fragments thereof may comprise specific VH, VL, and CDR polypeptides described herein. In some embodiments these antibodies and antigen binding fragments thereof bind to and/or compete for binding to specific epitope(s) on human PACAP. The invention is further directed to using these antagonistic anti-PACAP antibodies, and binding fragments thereof, for the diagnosis, assessment, and treatment of diseases and disorders associated with PACAP and conditions where antagonism of PACAP-related activities, such as vasodilation, mast cell degranulation, and/or neuronal activation, are therapeutically beneficial, e.g., headache and migraine indications.
    Type: Application
    Filed: January 8, 2019
    Publication date: March 12, 2020
    Inventors: Maria-Cristina LOOMIS, Leon F. GARCIA-MARTINEZ, Benjamin H. DUTZAR, Daniel S. ALLISON, Katherine Lee HENDRICKS, Ethan W. OJALA, Pei FAN, Jeffrey T.L. SMITH, John A. LATHAM, Charlie KARASEK, Jenny MULLIGAN, Michelle SCALLEY-KIM, Erica STEWART, Vanessa Lisbeth RUBIN, Jens J. BILLGREN
  • Patent number: 10533045
    Abstract: Processes for producing and purifying recombinant proteins are disclosed. In particular, the present disclosure provides processes of producing and purifying multi-subunit proteins expressed in yeast or filamentous fungal cells. The production and/or purification of such proteins are monitored for impurities, preferably using lectin binding assays, such that one or more process parameters may be adjusted to maximize the amount of desired recombinant protein and minimize the amount of glycosylated impurities. The processes can also be monitored for other undesired product-associated impurities, such as aggregates and nucleic acids. In exemplary embodiments, the recombinant proteins are multi-subunit proteins, such as antibodies, the host cell is a yeast, such as Pichia pastoris, and the glycosylated impurity is a glycovariant of the desired recombinant polypeptide, such as an N-linked and/or O-linked glycovariant.
    Type: Grant
    Filed: October 21, 2016
    Date of Patent: January 14, 2020
    Assignee: ALDER BIOPHARMACEUTICALS, INC.
    Inventors: Daniel S. Allison, Steven D. Davin, Hoa Binh Do, Leon F. Garcia-Martinez, Geoffrey F. Lee, Ethan W. Ojala, Mark Young, John A. Latham
  • Publication number: 20190270807
    Abstract: This invention relates to methods of screening for anti-PACAP antibodies, or anti-PACAP receptor antibodies, and antigen binding fragments thereof, for potential use in treating or preventing PACAP-associated photophobia or light aversion, and therapeutic compositions containing and methods of using anti-PACAP antibodies, or anti-PACAP receptor antibodies, and antigen binding fragments thereof
    Type: Application
    Filed: December 12, 2018
    Publication date: September 5, 2019
    Inventors: Adisa KUBURAS, Bianca MASON, Levi P. SOWERS, Andrew F. RUSSO, Maria-Cristina LOOMIS, Leon F. GARCIA-MARTINEZ, Benjamin H. DUTZAR, Daniel S. ALLISON, Katherine Lee HENDRICKS, Ethan W. OJALA, Pei FAN, Jeffrey T.L. SMITH, John A. LATHAM, Charlie KARASEK, Jenny MULLIGAN, Michelle SCALLEY-KIM, Erica STEWART, Vanessa Lisbeth RUBIN, Jens J. BILLGREN
  • Publication number: 20190233498
    Abstract: The present invention is directed to antibodies and antigen binding fragments thereof having binding specificity for PACAP. The antibodies and antigen binding fragments thereof comprise the sequences of the VH, VL, and CDR polypeptides described herein, and the polynucleotides encoding them. Antibodies and antigen binding fragments described herein bind to and/or compete for binding to the same linear or conformational epitope(s) on human PACAP as an anti-PACAP antibody. The invention contemplates conjugates of anti-PACAP antibodies and binding fragments thereof conjugated to one or more functional or detectable moieties. Methods of making said anti-PACAP antibodies and antigen binding fragments thereof are also contemplated.
    Type: Application
    Filed: February 11, 2019
    Publication date: August 1, 2019
    Inventors: Maria-Cristina Loomis, Leon Garcia-Martinez, Benjamin H. Dutzar, Daniel S. Allison, Katherine Lee Hendrix, Ethan W. Ojala, Pei Fan, Jeffrey T.L. Smith, John A. Latham, Charlie Karasek, Jenny Mulligan, Michelle Scalley-Kim, Erica Stewart, Vanessa Lisbeth Rubin, Jens J. Billgren
  • Publication number: 20180161197
    Abstract: Devices, systems and methods for removing heat from subcutaneously disposed lipid-rich cells are disclosed. In selected embodiments, suction and/or heat removal sources are coupled to an applicator. The applicator includes a flexible portion and a rigid portion. The rigid portion includes a thermally conductive plate and a frame coupling the thermally conductive plate and the flexible portion. An interior cavity of the applicator is in fluid communication with the suction source, and the frame maintains contiguous engagement between the heat removal source and the thermally conductive plate.
    Type: Application
    Filed: December 19, 2017
    Publication date: June 14, 2018
    Inventors: Mark William Baker, Jospeh Coakley, Paul William Martens, Albert L. Ollerdessen, William Patrick Pennybacker, Jesse N. Rosen, Peter Yee, John W. Allison
  • Patent number: 9861520
    Abstract: Devices, systems and methods for removing heat from subcutaneously disposed lipid-rich cells are disclosed. In selected embodiments, suction and/or heat removal sources are coupled to an applicator. The applicator includes a flexible portion and a rigid portion. The rigid portion includes a thermally conductive plate and a frame coupling the thermally conductive plate and the flexible portion. An interior cavity of the applicator is in fluid communication with the suction source, and the frame maintains contiguous engagement between the heat removal source and the thermally conductive plate.
    Type: Grant
    Filed: March 12, 2014
    Date of Patent: January 9, 2018
    Assignee: Zeltiq Aesthetics, Inc.
    Inventors: Mark William Baker, Joseph Coakley, Paul William Martens, Albert L. Ollerdessen, William Patrick Pennybacker, Jesse N. Rosen, Peter Yee, John W. Allison
  • Patent number: 9844461
    Abstract: Home-use applicators for non-invasively removing heat from subcutaneous, lipid-rich cells via phase change coolants, and associated devices, systems and methods. A device in accordance with a particular embodiment includes an applicator releasably positionable in thermal communication with human skin, and a coolant vessel having a coolant. The device further includes a heat transfer conduit operatively coupled to the applicator and housing a heat transfer fluid that is isolated from fluid contact with the coolant. A heat exchanger is operatively coupled between the coolant vessel and the heat transfer conduit to transfer heat between the heat transfer fluid and the coolant, and a fluid driver is operatively coupled to the heat transfer conduit to direct the heat transfer fluid between the applicator and the heat exchanger.
    Type: Grant
    Filed: January 25, 2011
    Date of Patent: December 19, 2017
    Assignee: Zeltiq Aesthetics, Inc.
    Inventors: Mitchell E. Levinson, John W. Allison, Joseph Coakley, Bryan Weber
  • Patent number: 9737434
    Abstract: Systems for removing heat from a subject's subcutaneous lipid-rich regions, such as tissue, organs, cells, and so forth, are described herein. In various embodiments, the system includes a treatment device and a controller for controlling a treatment process. The controller is configured to detect and compensate for an interruption in the treatment process.
    Type: Grant
    Filed: May 6, 2013
    Date of Patent: August 22, 2017
    Assignee: Zeltiq Aestehtics, Inc.
    Inventor: John W. Allison
  • Patent number: 9314368
    Abstract: Home-use applicators for non-invasively removing heat from subcutaneous, lipid-rich cells via phase change coolants, and associated devices, systems and methods. A device in accordance with a particular embodiment includes an applicator releasably positionable in thermal communication with human skin, and a coolant vessel having a coolant. The device further includes a heat transfer conduit operatively coupled to the applicator and housing a heat transfer fluid that is isolated from fluid contact with the coolant. A heat exchanger is operatively coupled between the coolant vessel and the heat transfer conduit to transfer heat between the heat transfer fluid and the coolant, and a fluid driver is operatively coupled to the heat transfer conduit to direct the heat transfer fluid between the applicator and the heat exchanger.
    Type: Grant
    Filed: January 25, 2011
    Date of Patent: April 19, 2016
    Assignee: Zeltiq Aesthetics, Inc.
    Inventors: John W. Allison, Mitchell E. Levinson, Jesse N. Rosen
  • Publication number: 20140257443
    Abstract: Devices, systems and methods for removing heat from subcutaneously disposed lipid-rich cells are disclosed. In selected embodiments, suction and/or heat removal sources are coupled to an applicator. The applicator includes a flexible portion and a rigid portion. The rigid portion includes a thermally conductive plate and a frame coupling the thermally conductive plate and the flexible portion. An interior cavity of the applicator is in fluid communication with the suction source, and the frame maintains contiguous engagement between the heat removal source and the thermally conductive plate.
    Type: Application
    Filed: March 12, 2014
    Publication date: September 11, 2014
    Applicant: ZELTIQ AESTHETICS, INC.
    Inventors: Mark William Baker, Joseph Coakley, Paul William Martens, Albert L. Ollerdessen, William Patrick Pennybacker, Jesse N. Rosen, Peter Yee, John W. Allison, Bryan J. Weber
  • Patent number: 8702774
    Abstract: Devices, systems and methods for removing heat from subcutaneously disposed lipid-rich cells are disclosed. In selected embodiments, suction and/or heat removal sources are coupled to an applicator. The applicator includes a flexible portion and a rigid portion. The rigid portion includes a thermally conductive plate and a frame coupling the thermally conductive plate and the flexible portion. An interior cavity of the applicator is in fluid communication with the suction source, and the frame maintains contiguous engagement between the heat removal source and the thermally conductive plate.
    Type: Grant
    Filed: April 30, 2010
    Date of Patent: April 22, 2014
    Assignee: Zeltiq Aesthetics, Inc.
    Inventors: Mark Baker, Joseph Coakley, Paul William Martens, Albert L. Ollerdessen, William Patrick Pennybacker, Jesse Nicasio Rosen, Peter Yee, John W. Allison, Bryan Weber
  • Patent number: 8693632
    Abstract: Controlling the timing of acquiring x-ray images based on target movement.
    Type: Grant
    Filed: February 28, 2012
    Date of Patent: April 8, 2014
    Assignee: Accuray Incorporated
    Inventor: John W. Allison
  • Patent number: 8603073
    Abstract: Systems for removing heat from a subject's subcutaneous lipid-rich regions, such as tissue, organs, cells, and so forth, are described herein. In various embodiments, the system includes a treatment device and a controller for controlling a treatment process. The controller is configured to detect and compensate for an interruption in the treatment process.
    Type: Grant
    Filed: December 17, 2008
    Date of Patent: December 10, 2013
    Assignee: Zeltiq Aesthetics, Inc.
    Inventor: John W. Allison
  • Publication number: 20130245731
    Abstract: Systems for removing heat from a subject's subcutaneous lipid-rich regions, such as tissue, organs, cells, and so forth, are described herein. In various embodiments, the system includes a treatment device and a controller for controlling a treatment process. The controller is configured to detect and compensate for an interruption in the treatment process.
    Type: Application
    Filed: May 6, 2013
    Publication date: September 19, 2013
    Applicant: ZELTIQ AESTHETICS, INC.
    Inventor: John W. Allison
  • Patent number: 8483358
    Abstract: A method, apparatus and system for measuring the signal-to-noise ratio of x-ray images and to adaptively control x-ray exposure in response to image quality and patient movement.
    Type: Grant
    Filed: October 13, 2008
    Date of Patent: July 9, 2013
    Assignee: Accuray Incorporated
    Inventor: John W. Allison