Patents by Inventor John W. Ayres

John W. Ayres has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8750713
    Abstract: The disclosure relates to optical fiber transmission systems, and in particular, pertains to the transceiver cards in an optical fiber transport system. In particular the disclosure teaches an improved transceiver card architecture that allows high density, flexibility and interchangeability of functionality.
    Type: Grant
    Filed: February 27, 2012
    Date of Patent: June 10, 2014
    Assignee: Pivotal Decisions LLC
    Inventors: Samir Satish Sheth, Marvin R. Young, Jeffrey Lloyd Cox, John W. Ayres, III
  • Patent number: 8247708
    Abstract: Signals entering outside plant (OSP) telecommunications enclosures typically do so through weather tight connectors, with one connector mounted to the enclosure and a mating connector connected to a cable bringing the signals to the OSP housing. Such connectors are expensive and require extensive effort to connect the wires of a cable bundle to the connectors. These problems are avoided by allowing cables pre-installed with a cable seal and pre-terminated to cable connectors to pass through an opening in the wall of an OSP housing and seal the cable bundle to the housing to prevent the ingress of environmental elements into the housing through the opening. This permits easier installation and retrofitting of electronic equipment contained within the housing.
    Type: Grant
    Filed: January 25, 2011
    Date of Patent: August 21, 2012
    Assignee: Adtran, Inc.
    Inventors: John W. Ayres, III, Grant J. Kruse, Jacob D. McCleary
  • Publication number: 20120155882
    Abstract: The disclosure relates to optical fiber transmission systems, and in particular, pertains to the transceiver cards in an optical fiber transport system. In particular the disclosure teaches an improved transceiver card architecture that allows high density, flexibility and interchangeability of functionality.
    Type: Application
    Filed: February 27, 2012
    Publication date: June 21, 2012
    Inventors: Samir Satish Sheth, Marvin R. Young, Jeffrey Lloyd Cox, John W. Ayres, III
  • Patent number: 8155519
    Abstract: The disclosure relates to optical fiber transmission systems, and in particular, pertains to the transceiver cards in an optical fiber transport system. In particular the disclosure teaches an improved transceiver card architecture that allows high density, flexibility and interchangeability of functionality.
    Type: Grant
    Filed: April 21, 2010
    Date of Patent: April 10, 2012
    Assignee: Pivotal Decisions LLC
    Inventors: Samir Satish Sheth, Marvin R. Young, Jeffrey Lloyd Cox, John W. Ayres, III
  • Patent number: 7915544
    Abstract: Signals entering outside plant (OSP) telecommunications enclosures typically do so through weather tight connectors, with one connector mounted to the enclosure and a mating connector connected to a cable bringing the signals to the OSP housing. Such connectors are expensive and require extensive effort to connect the wires of a cable bundle to the connectors. These problems are avoided by allowing cables pre-installed with a cable seal and pre-terminated to cable connectors to pass through an opening in the wall of an OSP housing and seal the cable bundle to the housing to prevent the ingress of environmental elements into the housing through the opening. This permits easier installation and retrofitting of electronic equipment contained within the housing.
    Type: Grant
    Filed: June 5, 2008
    Date of Patent: March 29, 2011
    Assignee: Adtran, Inc.
    Inventors: John W. Ayres, III, Grant J. Kruse, Jacob D. McCleary
  • Publication number: 20100241913
    Abstract: The disclosure relates to optical fiber transmission systems, and in particular, pertains to the transceiver cards in an optical fiber transport system. In particular the disclosure teaches an improved transceiver card architecture that allows high density, flexibility and interchangeability of functionality.
    Type: Application
    Filed: April 21, 2010
    Publication date: September 23, 2010
    Inventors: Samir Satish Sheth, Marvin R. Young, Jeffrey Lloyd Cox, John W. Ayres, III
  • Patent number: 7729617
    Abstract: The invention is relevant to optical fiber transmission systems, and in particular, pertains to the transceiver cards in an optical fiber transport system. In particular the invention teaches an improved transceiver card architecture that allows high density, flexibility and interchangeability of functionality.
    Type: Grant
    Filed: June 4, 2003
    Date of Patent: June 1, 2010
    Inventors: Samir Satish Sheth, Marvin R. Young, Jeffrey Lloyd Cox, John W. Ayres, III
  • Patent number: 7532782
    Abstract: A flexible optical circuit comprising passive or active components is provided. The flexible optical circuit includes a first optical fiber having both first and second ends, a second optical fiber having both first and second ends, a flexible substrate attached to both the first and second optical fibers where the first and second pins of the first and second optical fibers extend to at least the edge of the flexible substrate and a component coupled to the first optical fiber between the first and second ends. The component can be used passive or active. A passive component requires no electrical trace lines to activate the component and the passive component will react upon the reception of a light-wave signal. The active component will require power from the back plane before the active component can modify or affect the light-wave signal. The first and second ends of the optical fibers extend at least to the edge of the flexible optical circuit or can extend beyond the edge of the flexible substrate.
    Type: Grant
    Filed: December 18, 2002
    Date of Patent: May 12, 2009
    Assignee: Pivotal Decisions LLC
    Inventors: William David Bragg, Peter Earl Stokes, John W. Ayres, III
  • Publication number: 20040033079
    Abstract: The invention is relevant to optical fiber transmission systems, and in particular, pertains to the transceiver cards in an optical fiber transport system. In particular the invention teaches an improved transceiver card architecture that allows high density, flexibility and interchangeability of functionality.
    Type: Application
    Filed: June 4, 2003
    Publication date: February 19, 2004
    Inventors: Samir Satish Sheth, Marvin R. Young, Jeffrey Lloyd Cox, John W. Ayres
  • Publication number: 20030198427
    Abstract: A flexible optical circuit comprising passive or active components is provided. The flexible optical circuit includes a first optical fiber having both first and second ends, a second optical fiber having both first and second ends, a flexible substrate attached to both the first and second optical fibers where the first and second pins of the first and second optical fibers extend to at least the edge of the flexible substrate and a component coupled to the first optical fiber between the first and second ends. The component can be used passive or active. A passive component requires no electrical trace lines to activate the component and the passive component will react upon the reception of a light-wave signal. The active component will require power from the back plane before the active component can modify or affect the light-wave signal. The first and second ends of the optical fibers extend at least to the edge of the flexible optical circuit or can extend beyond the edge of the flexible substrate.
    Type: Application
    Filed: December 18, 2002
    Publication date: October 23, 2003
    Inventors: William David Bragg, Peter Earl Stokes, John W. Ayres
  • Patent number: 6330160
    Abstract: The present invention is directed to a mounting clip for electronic components and, more specifically, to a component retention spring clip for securing electronic components to an electronic device support such as the leg of a heat sink. In one embodiment the component retention clip is comprised of a resilient strip that has an arcuate portion and first and second ends. The resilient strip is configured to encompass an electronic component and an electronic device support adjacent to the electronic component. The arcuate portion of the component retention clip contacts a portion of the electronic component, thereby partially supporting the electronic component against the electronic device support. Located at the first end of the resilient strip is a first latch configured to cooperatively engage a corresponding second latch located at the second end and retain the electronic component on the electronic device support.
    Type: Grant
    Filed: July 25, 2000
    Date of Patent: December 11, 2001
    Assignee: Lucent Technologies, Inc.
    Inventors: John W. Ayres, Susan M. Ayres, Vincent M. Byrne, Edward C. Fontana
  • Patent number: 6320749
    Abstract: The present invention provides a receptacle configured to receive an electronics module for use with an electronics equipment chassis. In one embodiment, the receptacle has a torsion bar, to which is coupled a first planar sidewall with a boss located on an inside planar surface, the boss configured to cooperatively engage a first notch formed on a rear wall of an electronics module. The first sidewall also has a locking slot formed in its front edge lo configured to receive a first locking cam associated with the electronics module, the locking slot cooperating with the locking cam and the boss to create a longitudinal compressive force along the first planar sidewall. A second planar sidewall opposing the first planar sidewall is coupled to the torsion bar.
    Type: Grant
    Filed: August 30, 1999
    Date of Patent: November 20, 2001
    Inventors: John W. Ayres, Vincent Byrne, Timothy F. Conway, Edward C. Fontana
  • Patent number: 6302781
    Abstract: A faceplate for a chassis composed of a moldable material and various methods of fabricating and assembling the faceplate into a fan-cooled electronics enclosure. In one embodiment, the faceplate includes: (1) a chassis mount adapted to cooperate with a corresponding first faceplate mount on the chassis to register the faceplate with respect to the chassis, (2) a fan mount adapted to cooperate with a corresponding second faceplate mount on a fan to register the faceplate with respect to the chassis and (3) a grille proximate the fan mount, the chassis mount and the fan mount cooperating to affix the fan to the chassis when the faceplate is mounted to the chassis.
    Type: Grant
    Filed: June 7, 1999
    Date of Patent: October 16, 2001
    Inventors: John W. Ayres, Vincent M. Byrne, Edward C. Fontana, Steven C. Stein
  • Patent number: 6201699
    Abstract: The present invention provides a heat sink that, in an advantageous embodiment, includes a spine having a width with first and second opposing sides that are oriented to be abnormal to the substrate when the heat sink is mounted on the substrate. The heat sink further includes an electronic device support leg that extends generally transverse from the first side and that is configured to support a heat generating electrical component thereon. Alternative embodiments of the present invention may include a plurality of such electronic device support legs. A plurality of cooling fins are also included in the present invention, extending from the second side. Moreover, each of the plurality of cooling fins has a depth that is substantially less than the width of the heat sink, which give this unique heat sink an exceptional cooling efficiency. In particular advantageous embodiments, the depth to width ratio of the fins and spine, may range from about 1 to 5 or 1 to 10, respectively.
    Type: Grant
    Filed: March 1, 1999
    Date of Patent: March 13, 2001
    Assignee: Lucent Technologies Inc.
    Inventors: John W. Ayres, Vincent Byrne, Edward C. Fontana, Steven C. Stein
  • Patent number: 4380873
    Abstract: A co-ordinate measuring system for determining the relative measurements of an object is disclosed. The system utilizes a probe which has a plurality of faces which are interconnected so as to form two parallel "X" co-ordinate probe surfaces (12) and two parallel "Y" co-ordinate probe surfaces (14). At the instant the probe contacts a surface on the object being measured, an electrical circuit is completed through the probe to ground potential via the object, causing the measurement to be displayed on a visual display device (20 or 22). In this manner, measurements along the "X" and "Y" co-ordinates can be made and recorded at the instant the probe contacts the respective surfaces. An automatic unlatching feature is provided wherein the probe must be a predetermined distance from both the "X" and "Y" surfaces before the system automatically resets.
    Type: Grant
    Filed: March 12, 1981
    Date of Patent: April 26, 1983
    Assignee: The Babcock & Wilcox Company
    Inventors: John W. Ayres, Harold S. James