Patents by Inventor John W. Connell

John W. Connell has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240391025
    Abstract: Methods and systems for the laser surface treatment on stainless steel alloys and nickel alloys may include a computer may be programmed to set a laser path corresponding to a predetermined geometric pattern. A laser may be coupled to the computer and apply a pulsed laser beam to a contact surface of the substrate along the predefined geometric pattern. The pulsed laser beam may have a laser power between 0.1 W and 100 W, single pulse fluence 1 mJ/mm2 and 1025 mJ/mm2 and a laser speed between 25.4 cm/s and 127 cm/s. The laser may generate an open pore oxide layer on the contact surface of the substrate with a thickness of 0.1-1 ?m, an open pore distance of 0.05-1 ?m. The open pore oxide layer may have a topography corresponding to the predefined geometric pattern. The topography may contain open pore structures and promote adhesive bond performance.
    Type: Application
    Filed: August 2, 2024
    Publication date: November 28, 2024
    Applicants: RTX Corporation, UNITED STATES OF AMERICA AS REPRESENTED BY THE ADMINISTRATOR OF NASA
    Inventors: Xiaomei Fang, Christopher J. Hertel, John D. Riehl, John W. Connell, Frank L. Palmieri, John W. Hopkins
  • Patent number: 12083625
    Abstract: Methods and systems for the laser surface treatment on stainless steel alloys and nickel alloys may include a computer may be programmed to set a laser path corresponding to a predetermined geometric pattern. A laser may be coupled to the computer and apply a pulsed laser beam to a contact surface of the substrate along the predefined geometric pattern. The pulsed laser beam may have a laser power between 0.1 W and 100 W, single pulse fluence 1 mJ/mm2 and 1025 mJ/mm2 and a laser speed between 25.4 cm/s and 127 cm/s. The laser may generate an open pore oxide layer on the contact surface of the substrate with a thickness of 0.1-1 ?m, an open pore distance of 0.05-1 ?m. The open pore oxide layer may have a topography corresponding to the predefined geometric pattern. The topography may contain open pore structures and promote adhesive bond performance.
    Type: Grant
    Filed: April 3, 2020
    Date of Patent: September 10, 2024
    Assignees: RTX Corporation, USA as Represented by the Administrator of the National Aeronautics and Space Administration
    Inventors: Xiaomei Fang, Christopher J. Hertel, John D. Riehl, John W. Connell, Frank L. Palmieri, John W. Hopkins
  • Patent number: 11845834
    Abstract: Compositions including a polyamide, and compaction rollers for an automated fiber placement machine incorporating the composition are provided. The polyamide may be a reaction product of at least one diamine and an aromatic dicarboxylic acid, a hydroxy benzoic acid, or their respective ester or acyl halide derivatives. The at least one diamine may include an amino terminated perfluorinated alkyl ether polymer or oligomer. The composition may have a thermal conductivity of from about 0.2 to about 50 Watts per meter Kelvin (Wm?1K?1).
    Type: Grant
    Filed: July 30, 2021
    Date of Patent: December 19, 2023
    Assignees: The Boeing Company, United States Government, as Represented by the Administrator of the National Aeronautics and Space Administration
    Inventors: Sayata Ghose, Marcus Anthony Belcher, John W. Connell
  • Patent number: 11760738
    Abstract: Copoly(imide oxetane) materials are disclosed that can exhibit a low surface energy while possessing the mechanical, thermal, chemical and optical properties associated with polyimides. The copoly(imide oxetane)s are prepared using a minor amount of fluorinated oxetane-derived oligomer with sufficient fluorine-containing segments of the copoly(imide oxetane)s migrate to the exterior surface of the polymeric material to yield low surface energies. Thus the coatings and articles of manufacture made with the copoly(imide oxetane)s of this invention are characterized as having an anisotropic fluorine composition. The low surface energies can be achieved with very low content of fluorinated oxetane-derived oligomer. The copolymers of this invention can enhance the viability of polyimides for many applications and may be acceptable where homopolyimide materials have been unacceptable.
    Type: Grant
    Filed: September 28, 2021
    Date of Patent: September 19, 2023
    Assignee: United States of America as represented by the Adminstrator of NASA
    Inventors: Christopher J. Wohl, Jr., John W. Connell, Emilie J. Siochi, Joseph G. Smith, Jr.
  • Patent number: 11725079
    Abstract: Compositions including a polyimide and one or more thermally conductive fillers, and compaction rollers for an automated fiber placement machine incorporating the compositions are provided. The polyimide may be a polymeric reaction product of a dianhydride and one or more diamines. The one or more diamines may include a fluorine-containing alkyl ether diamine. The one or more thermally conductive fillers may include one or more of a carbon-based filler, boron nitride, a metal, or combinations thereof. The compositions may have a thermal conductivity of from about 0.2 to about 50 Watts per meter Kelvin (Wm?1 K?1).
    Type: Grant
    Filed: July 15, 2021
    Date of Patent: August 15, 2023
    Assignees: THE BOEING COMPANY, United States Government, as Represented by the Administrator of the of the National Aeronautics and Space Adminstration
    Inventors: Sayata Ghose, Marcus Anthony Belcher, John W. Connell
  • Patent number: 11697709
    Abstract: Compositions including a poly(arylene ether), and compaction rollers for an automated fiber placement machine incorporating the composition are provided. The poly(arylene ether) may be a reaction product of at least one disubstituted benzophenone and at least one polyol. The at least one polyol may include at least one fluorinated diol. The composition may have a thermal conductivity of from about 0.2 to about 50 Watts per meter Kelvin (Wm?1K?1).
    Type: Grant
    Filed: July 30, 2021
    Date of Patent: July 11, 2023
    Assignees: THE BOEING COMPANY, United States Government, as Represented by the Administrator of the National Aeronautics and Space Administration
    Inventors: Sayata Ghose, Marcus Anthony Belcher, John W. Connell
  • Patent number: 11413850
    Abstract: Systems, methods, and devices of the various embodiments provide for the creation of holey graphene meshes (HGMs) and composite articles including HGMs. Various embodiments provide solvent-free methods for creating arrays of holes on holey graphene-based articles formed from dry compression (such as films, discs, pellets), thereby resulting in a HGM. In further embodiments, a HGM can used as part of a composite, such as by: 1) embedding a HGM into another matrix material such as carbon, polymer, metals, metal oxides, etc; and/or (2) the HGM serving as a matrix by filling the holes of the HGM or functionalizing the HGM body with another one or more materials. In various embodiments, HGM can also be made as a composite itself by creating holes on dry-compressed articles pre-embedded with one or more other materials.
    Type: Grant
    Filed: November 16, 2020
    Date of Patent: August 16, 2022
    Assignee: UNITED STATES OF AMERICA AS REPRESENTED BY THE ADMINISTRATOR OF NASA
    Inventors: Yi Lin, John W. Connell, John W. Hopkins, Brandon Moitoso
  • Publication number: 20220168970
    Abstract: Described herein are composites produced with a barrier ply. The barrier-ply prevents excessive mixing between conventional composite precursors and stoichiometrically-offset precursors during a cure process by gelling early in the cure cycle before extensive mixing can occur. Excess mixing requires the use of thicker offset resin layers with a large stoichiometric offset, which may limit the performance of unitized structures. The use of the barrier plies described herein address this issue and improves the mechanical properties of the final composite product as well as the efficiency for making the composites.
    Type: Application
    Filed: December 1, 2021
    Publication date: June 2, 2022
    Inventors: Frank L. Palmieri, John W. Connell, Robetro J. Cano, Tyler B. Hudson
  • Publication number: 20220106441
    Abstract: Compositions including a poly(arylene ether), and compaction rollers for an automated fiber placement machine incorporating the composition are provided. The poly(arylene ether) may be a reaction product of at least one disubstituted benzophenone and at least one polyol. The at least one polyol may include at least one fluorinated diol. The composition may have a thermal conductivity of from about 0.2 to about 50 Watts per meter Kelvin (Wm?1K?1).
    Type: Application
    Filed: July 30, 2021
    Publication date: April 7, 2022
    Inventors: Sayata Ghose, Marcus Anthony Belcher, John W. Connell
  • Publication number: 20220089817
    Abstract: Compositions including a polyamide, and compaction rollers for an automated fiber placement machine incorporating the composition are provided. The polyamide may be a reaction product of at least one diamine and an aromatic dicarboxylic acid, a hydroxy benzoic acid, or their respective ester or acyl halide derivatives. The at least one diamine may include an amino terminated perfluorinated alkyl ether polymer or oligomer. The composition may have a thermal conductivity of from about 0.2 to about 50 Watts per meter Kelvin (Wm?1K?1).
    Type: Application
    Filed: July 30, 2021
    Publication date: March 24, 2022
    Inventors: Sayata Ghose, Marcus Anthony Belcher, John W. Connell
  • Publication number: 20220017697
    Abstract: Compositions including a polyimide and one or more thermally conductive fillers, and compaction rollers for an automated fiber placement machine incorporating the compositions are provided. The polyimide may be a polymeric reaction product of a dianhydride and one or more diamines. The one or more diamines may include a fluorine-containing alkyl ether diamine. The one or more thermally conductive fillers may include one or more of a carbon-based filler, boron nitride, a metal, or combinations thereof. The compositions may have a thermal conductivity of from about 0.2 to about 50 Watts per meter Kelvin (Wm?1 K?1).
    Type: Application
    Filed: July 15, 2021
    Publication date: January 20, 2022
    Inventors: Sayata Ghose, Marcus Anthony Belcher, John W. Connell
  • Publication number: 20220017479
    Abstract: Copoly(imide oxetane) materials are disclosed that can exhibit a low surface energy while possessing the mechanical, thermal, chemical and optical properties associated with polyimides. The copoly(imide oxetane)s are prepared using a minor amount of fluorinated oxetane-derived oligomer with sufficient fluorine-containing segments of the copoly(imide oxetane)s migrate to the exterior surface of the polymeric material to yield low surface energies. Thus the coatings and articles of manufacture made with the copoly(imide oxetane)s of this invention are characterized as having an anisotropic fluorine composition. The low surface energies can be achieved with very low content of fluorinated oxetane-derived oligomer. The copolymers of this invention can enhance the viability of polyimides for many applications and may be acceptable where homopolyimide materials have been unacceptable.
    Type: Application
    Filed: September 28, 2021
    Publication date: January 20, 2022
    Inventors: Christopher J. Wohl, JR., John W. Connell, Emilie J. Siochi, Joseph G. Smith, JR.
  • Patent number: 11130742
    Abstract: Copoly(imide oxetane) materials are disclosed that can exhibit a low surface energy while possessing the mechanical, thermal, chemical and optical properties associated with polyimides. The copoly(imide oxetane)s are prepared using a minor amount of fluorinated oxetane-derived oligomer with sufficient fluorine-containing segments of the copoly(imide oxetane)s migrate to the exterior surface of the polymeric material to yield low surface energies. Thus the coatings and articles of manufacture made with the copoly(imide oxetane)s of this invention are characterized as having an anisotropic fluorine composition. The low surface energies can be achieved with very low content of fluorinated oxetane-derived oligomer. The copolymers of this invention can enhance the viability of polyimides for many applications and may be acceptable where homopolyimide materials have been unacceptable.
    Type: Grant
    Filed: April 21, 2020
    Date of Patent: September 28, 2021
    Assignee: United States of America as represented by the Administrator of NASA
    Inventors: Christopher J. Wohl, Jr., John W. Connell, Emilie J. Siochi, Joseph G. Smith, Jr.
  • Patent number: 11097499
    Abstract: A method allows for preparation of CNT nanocomposites having improved mechanical, electrical and thermal properties. Structured carbon nanotube forms such as sheet, yarn, and tape are modified with ?-conjugated conductive polymers, including polyaniline (PANT), fabricated by in-situ polymerization. The PANI modified CNT nanocomposites are subsequently post-processed to improve mechanical properties by hot press and carbonization.
    Type: Grant
    Filed: November 4, 2019
    Date of Patent: August 24, 2021
    Assignee: UNITED STATES OF AMERICA AS REPRESENTED BY THE ADMINISTRATOR OF NASA
    Inventors: Jae-Woo Kim, Emilie J. Siochi, Kristopher E. Wise, John W. Connell, Yi Lin, Russell A. Wincheski, Dennis C. Working
  • Publication number: 20210078287
    Abstract: Systems, methods, and devices of the various embodiments provide for the creation of holey graphene meshes (HGMs) and composite articles including HGMs. Various embodiments provide solvent-free methods for creating arrays of holes on holey graphene-based articles formed from dry compression (such as films, discs, pellets), thereby resulting in a HGM. In further embodiments, a HGM can used as part of a composite, such as by: 1) embedding a HGM into another matrix material such as carbon, polymer, metals, metal oxides, etc; and/or (2) the HGM serving as a matrix by filling the holes of the HGM or functionalizing the HGM body with another one or more materials. In various embodiments, HGM can also be made as a composite itself by creating holes on dry-compressed articles pre-embedded with one or more other materials.
    Type: Application
    Filed: November 16, 2020
    Publication date: March 18, 2021
    Inventors: YI LIN, JOHN W. CONNELL, JOHN W. HOPKINS, BRANDON MOITOSO
  • Patent number: 10836137
    Abstract: Systems, methods, and devices of the various embodiments provide for the creation of holey graphene meshes (HGMs) and composite articles including HGMs. Various embodiments provide solvent-free methods for creating arrays of holes on holey graphene-based articles formed from dry compression (such as films, discs, pellets), thereby resulting in a HGM. In further embodiments, a HGM can used as part of a composite, such as by: 1) embedding a HGM into another matrix material such as carbon, polymer, metals, metal oxides, etc; and/or (2) the HGM serving as a matrix by filling the holes of the HGM or functionalizing the HGM body with another one or more materials. In various embodiments, HGM can also be made as a composite itself by creating holes on dry-compressed articles pre-embedded with one or more other materials.
    Type: Grant
    Filed: July 20, 2018
    Date of Patent: November 17, 2020
    Assignee: UNITED STATES OF AMERICA AS REPRESENTED BY THE ADMINISTRATOR OF NASA
    Inventors: Yi Lin, John W. Connell, John W. Hopkins, Brandon Moitoso
  • Publication number: 20200343525
    Abstract: Composite material and method of manufacture is provided. The composite material is manufactured by a solventless and binderless dry compression process.
    Type: Application
    Filed: April 16, 2020
    Publication date: October 29, 2020
    Inventors: Liangbing HU, Dylan KIRSCH, Steven LACEY, Yi LIN, John W. CONNELL
  • Patent number: 10808079
    Abstract: Various embodiments provide random copolyimides that may possess the mechanical, thermal, chemical and optical properties associated with polyimides yet achieve a low energy surface. In various embodiments, the copolyimides may be prepared using a minor amounts of a diamino terminated fluorinated alkyl ether oligomer and a diamino terminated siloxane oligomer. The various embodiments include processes for making the copolyimides containing fluorine and silicon surface modifying agents and anisotropic coatings and articles of manufacture from them. Thus the coatings and articles of manufacture made with the copolyimides of the various embodiments may be characterized as having an anisotropic fluorine and silicon composition and low surface energy.
    Type: Grant
    Filed: March 24, 2016
    Date of Patent: October 20, 2020
    Assignee: UNITED STATES OF AMERICA AS REPRESENTED BY THE ADMINISTRATOR OF NASA
    Inventors: John W. Connell, Christopher J. Wohl, Jr., Jereme R. Doss, Allison M. Crow, William T. Kim, Yi Lin
  • Publication number: 20200316721
    Abstract: Methods and systems for the laser surface treatment on stainless steel alloys and nickel alloys may include a computer may be programmed to set a laser path corresponding to a predetermined geometric pattern. A laser may be coupled to the computer and apply a pulsed laser beam to a contact surface of the substrate along the predefined geometric pattern. The pulsed laser beam may have a laser power between 0.1 W and 100 W, single pulse fluence 1 mJ/mm2 and 1025 mJ/mm2 and a laser speed between 25.4 cm/s and 127 cm/s. The laser may generate an open pore oxide layer on the contact surface of the substrate with a thickness of 0.1-1 ?m, an open pore distance of 0.05-1 ?m. The open pore oxide layer may have a topography corresponding to the predefined geometric pattern. The topography may contain open pore structures and promote adhesive bond performance.
    Type: Application
    Filed: April 3, 2020
    Publication date: October 8, 2020
    Applicants: UNITED TECHNOLOGIES CORPORATION, UNITED STATES OF AMERICA AS REPRESENTED BY THE ADMINISTRATOR OF NASA
    Inventors: XIAOMEI FANG, Christopher J. Hertel, John D. Riehl, John W. Connell, Frank L. Palmieri, John W. Hopkins
  • Publication number: 20200247770
    Abstract: Copoly(imide oxetane) materials are disclosed that can exhibit a low surface energy while possessing the mechanical, thermal, chemical and optical properties associated with polyimides. The copoly(imide oxetane)s are prepared using a minor amount of fluorinated oxetane-derived oligomer with sufficient fluorine-containing segments of the copoly(imide oxetane)s migrate to the exterior surface of the polymeric material to yield low surface energies. Thus the coatings and articles of manufacture made with the copoly(imide oxetane)s of this invention are characterized as having an anisotropic fluorine composition. The low surface energies can be achieved with very low content of fluorinated oxetane-derived oligomer. The copolymers of this invention can enhance the viability of polyimides for many applications and may be acceptable where homopolyimide materials have been unacceptable.
    Type: Application
    Filed: April 21, 2020
    Publication date: August 6, 2020
    Inventors: Christopher J. Wohl, JR., John W. Connell, Emilie J. Siochi, Joseph G. Smith, JR.