Patents by Inventor John W. Graff

John W. Graff has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 12041203
    Abstract: Various examples are directed to systems and methods for detecting potentially fraudulent voice calls to a financial services institution. A computing system may receive an indication of a voice call placed by a voice caller to an operator. The computing system may generate a network address indicator describing a network location. The network address indicator may be provided to the voice caller. The computing system may receive an indication of a financial services account indicated by the voice caller. The computing system may also receive an indication of an access to the network location by a remote device. The computing system may determine, using the indication of the access to the network location, a first location associated with the remote device and determine that the first location does not match a second location associated with the financial services account. The computing system may generate an alert indicating that the voice call is potentially fraudulent.
    Type: Grant
    Filed: April 20, 2023
    Date of Patent: July 16, 2024
    Assignee: Wells Fargo Bank, N.A.
    Inventors: John Talbert Jackson, Gene C. Baker, Jr., Jon T. Graff, Chad Otto Breunig, Kevin W. Bell, Darrell Lee Suen
  • Publication number: 20240210715
    Abstract: Disclosed herein are systems and methods including polarization sorting metasurface microlens array devices. In certain embodiments, a polarization imaging device is provided. The polarization imaging device includes: a source of image light; a metasurface lenslet array comprising a plurality of repeating metasurface lenslets, where the plurality of repeating metasurface lenslets comprise a plurality of first metasurface lenslets configured to diffract the image light into a first polarization light in a first direction and a second polarization light in a second direction; an image sensor positioned in the optical path of the first polarization light and the second polarization light, and where the image sensor includes a plurality of image sensing units including a first image sensing unit positioned to sense the first polarization light and a second image sensing unit positioned to sense the second polarization light.
    Type: Application
    Filed: March 11, 2024
    Publication date: June 27, 2024
    Applicant: Metalenz, Inc.
    Inventors: Robert C. Devlin, Pawel Latawiec, John W. Graff, Anne Janet Milliez, Seyedali Forouzmand, Dalia P. Ornelas Huerta, Hao Zhou, Harris Miller
  • Publication number: 20240118456
    Abstract: Disclosed herein is various shared-aperture camera systems and calibration methods. One particular shared-aperture camera system includes a polarization imaging device including: an aperture; a first metasurface configured to diffract incident light going through the aperture such that a first polarization of incident light diffracts in a first direction and a second polarization of the incident light diffracts in a second direction; an image sensor; and a planar diffractive lens including a second metasurface configured to focus the first polarization of incident light diffracted in the first direction onto a first portion of the image sensor and focus the second polarization of incident light diffracted in the second direction onto a second portion of the image sensor.
    Type: Application
    Filed: October 4, 2023
    Publication date: April 11, 2024
    Applicant: Metalenz, Inc.
    Inventors: Pawel Latawiec, Seyedali Forouzmand, Meng Lu, Mohammad Salary, Anne Janet Milliez, John W. Graff
  • Patent number: 11927769
    Abstract: Disclosed herein are systems and methods including polarization sorting metasurface microlens array devices. In certain embodiments, a polarization imaging device is provided. The polarization imaging device includes: a source of image light; a metasurface lenslet array comprising a plurality of repeating metasurface lenslets, where the plurality of repeating metasurface lenslets comprise a plurality of first metasurface lenslets configured to diffract the image light into a first polarization light in a first direction and a second polarization light in a second direction; an image sensor positioned in the optical path of the first polarization light and the second polarization light, and where the image sensor includes a plurality of image sensing units including a first image sensing unit positioned to sense the first polarization light and a second image sensing unit positioned to sense the second polarization light.
    Type: Grant
    Filed: March 31, 2023
    Date of Patent: March 12, 2024
    Assignee: Metalenz, Inc.
    Inventors: Robert C. Devlin, Pawel Latawiec, John W. Graff, Anne Janet Milliez, Seyedali Forouzmand, Dalia P. Ornelas Huerta, Hao Zhou, Harris Miller
  • Publication number: 20230314827
    Abstract: Disclosed herein are systems and methods including polarization sorting metasurface microlens array devices. In certain embodiments, a polarization imaging device is provided. The polarization imaging device includes: a source of image light; a metasurface lenslet array comprising a plurality of repeating metasurface lenslets, where the plurality of repeating metasurface lenslets comprise a plurality of first metasurface lenslets configured to diffract the image light into a first polarization light in a first direction and a second polarization light in a second direction; an image sensor positioned in the optical path of the first polarization light and the second polarization light, and where the image sensor includes a plurality of image sensing units including a first image sensing unit positioned to sense the first polarization light and a second image sensing unit positioned to sense the second polarization light.
    Type: Application
    Filed: March 31, 2023
    Publication date: October 5, 2023
    Applicant: Metalenz, Inc.
    Inventors: Robert C. Devlin, Pawel Latawiec, John W. Graff, Anne Janet Milliez, Seyedali Forouzmand, Dalia P. Ornelas Huerta, Hao Zhou, Harris Miller
  • Patent number: 10825653
    Abstract: A method for improving the ion beam quality in an ion implanter is disclosed. In some ion implantation systems, contaminants from the ion source are extracted with the desired ions, introducing contaminants to the workpiece. These contaminants may be impurities in the ion source chamber. This problem is exacerbated when mass analysis of the extracted ion beam is not performed, and is further exaggerated when the desired feedgas includes a halogen. The introduction of a diluent gas in the ion chamber may reduce the deleterious effects of the halogen on the inner surfaces of the chamber, reducing contaminants in the extracted ion beam. In some embodiments, the diluent gas may be germane or silane.
    Type: Grant
    Filed: September 21, 2018
    Date of Patent: November 3, 2020
    Assignee: Varian Semiconductor Equipment Associates, Inc.
    Inventors: John W. Graff, Bon-Woong Koo, John A. Frontiero, Nicholas P. T. Bateman, Timothy J. Miller, Vikram M. Bholse
  • Patent number: 10804075
    Abstract: A method for improving the ion beam quality in an ion implanter is disclosed. In some ion implantation systems, contaminants from the ion source are extracted with the desired ions, introducing contaminants to the workpiece. These contaminants may be impurities in the ion source chamber. This problem is exacerbated when mass analysis of the extracted ion beam is not performed, and is further exaggerated when the desired feedgas includes a halogen. The introduction of a diluent gas in the ion chamber may reduce the deleterious effects of the halogen on the inner surfaces of the chamber, reducing contaminants in the extracted ion beam. In some embodiments, the diluent gas may be germane or silane.
    Type: Grant
    Filed: November 14, 2016
    Date of Patent: October 13, 2020
    Assignee: Varian Semiconductor Equipment Associates, Inc.
    Inventors: John W. Graff, Bon-Woong Koo, John A. Frontiero, Nicholas P T Bateman, Timothy J. Miller, Vikram M. Bhosle
  • Publication number: 20190027341
    Abstract: A method for improving the ion beam quality in an ion implanter is disclosed. In some ion implantation systems, contaminants from the ion source are extracted with the desired ions, introducing contaminants to the workpiece. These contaminants may be impurities in the ion source chamber. This problem is exacerbated when mass analysis of the extracted ion beam is not performed, and is further exaggerated when the desired feedgas includes a halogen. The introduction of a diluent gas in the ion chamber may reduce the deleterious effects of the halogen on the inner surfaces of the chamber, reducing contaminants in the extracted ion beam. In some embodiments, the diluent gas may be germane or silane.
    Type: Application
    Filed: September 21, 2018
    Publication date: January 24, 2019
    Inventors: John W. Graff, Bon-Woong Koo, John A. Frontiero, Nicholas P.T. Bateman, Timothy J. Miller, Vikram M. Bholse
  • Publication number: 20170062182
    Abstract: A method for improving the ion beam quality in an ion implanter is disclosed. In some ion implantation systems, contaminants from the ion source are extracted with the desired ions, introducing contaminants to the workpiece. These contaminants may be impurities in the ion source chamber. This problem is exacerbated when mass analysis of the extracted ion beam is not performed, and is further exaggerated when the desired feedgas includes a halogen. The introduction of a diluent gas in the ion chamber may reduce the deleterious effects of the halogen on the inner surfaces of the chamber, reducing contaminants in the extracted ion beam. In some embodiments, the diluent gas may be germane or silane.
    Type: Application
    Filed: November 14, 2016
    Publication date: March 2, 2017
    Inventors: John W. Graff, Bon-Woong Koo, John A. Frontiero, Nicholas PT Bateman, Timothy J. Miller, Vikram M. Bhosle
  • Patent number: 9524849
    Abstract: A method for improving the ion beam quality in an ion implanter is disclosed. In some ion implantation systems, contaminants from the ion source are extracted with the desired ions, introducing contaminants to the workpiece. These contaminants may be impurities in the ion source chamber. This problem is exacerbated when mass analysis of the extracted ion beam is not performed, and is further exaggerated when the desired feedgas includes a halogen. The introduction of a diluent gas in the ion chamber may reduce the deleterious effects of the halogen on the inner surfaces of the chamber, reducing contaminants in the extracted ion beam. In some embodiments, the diluent gas may be germane or silane.
    Type: Grant
    Filed: November 26, 2013
    Date of Patent: December 20, 2016
    Assignee: Varian Semiconductor Equipment Associates, Inc.
    Inventors: John W. Graff, Bon-Woong Koo, John A. Frontiero, Nicholas PT Bateman, Timothy J. Miller, Vikram M. Bhosle
  • Patent number: 9034743
    Abstract: A method of processing a workpiece is disclosed, where the ion chamber is first coated with the desired dopant species and another species. Following this conditioning process, a feedgas, which comprises fluorine and the desired dopant, is introduced to the chamber and ionized. Ions are then extracted from the chamber and accelerated toward the workpiece, where they are implanted without being first mass analyzed. The other species used during the conditioning process may be a Group 3, 4 or 5 element. The desired dopant species may be boron.
    Type: Grant
    Filed: November 26, 2013
    Date of Patent: May 19, 2015
    Assignee: Varian Semiconductor Equipment Associates, Inc.
    Inventors: Peter F. Kurunczi, Bon-Woong Koo, John A. Frontiero, William T. Levay, Christopher J. Leavitt, Timothy J. Miller, Vikram M. Bhosle, John W. Graff, Nicholas P T Bateman
  • Publication number: 20150024580
    Abstract: A method of processing a workpiece is disclosed, where the ion chamber is first coated with the desired dopant species and another species. Following this conditioning process, a feedgas, which comprises fluorine and the desired dopant, is introduced to the chamber and ionized. Ions are then extracted from the chamber and accelerated toward the workpiece, where they are implanted without being first mass analyzed. The other species used during the conditioning process may be a Group 3, 4 or 5 element. The desired dopant species may be boron.
    Type: Application
    Filed: November 26, 2013
    Publication date: January 22, 2015
    Inventors: Peter F. Kurunczi, Bon-Woong Koo, John A. Frontiero, William T. Levay, Christopher J. Leavitt, Timothy J. Miller, Vikram M. Bhosle, John W. Graff, Nicholas PT Bateman
  • Publication number: 20150024579
    Abstract: A method for improving the ion beam quality in an ion implanter is disclosed. In some ion implantation systems, contaminants from the ion source are extracted with the desired ions, introducing contaminants to the workpiece. These contaminants may be impurities in the ion source chamber. This problem is exacerbated when mass analysis of the extracted ion beam is not performed, and is further exaggerated when the desired feedgas includes a halogen. The introduction of a diluent gas in the ion chamber may reduce the deleterious effects of the halogen on the inner surfaces of the chamber, reducing contaminants in the extracted ion beam. In some embodiments, the diluent gas may be germane or silane.
    Type: Application
    Filed: November 26, 2013
    Publication date: January 22, 2015
    Applicant: Varian Semiconductor Equipment Associates, Inc.
    Inventors: John W. Graff, Bon-Woong Koo, John A. Frontiero, Nicholas PT Bateman, Timothy J. Miller, Vikram M. Bhosle
  • Patent number: 8912082
    Abstract: Methods to form complementary implant regions in a workpiece are disclosed. A mask may be aligned with respect to implanted or doped regions on the workpiece. The mask also may be aligned with respect to surface modifications on the workpiece, such as deposits or etched regions. A masking material also may be deposited on the implanted regions using the mask. The workpiece may be a solar cell.
    Type: Grant
    Filed: March 23, 2011
    Date of Patent: December 16, 2014
    Assignee: Varian Semiconductor Equipment Associates, Inc.
    Inventors: Nicholas P. T. Bateman, William T. Weaver, Paul Sullivan, John W. Graff
  • Patent number: 8895325
    Abstract: A system and method are disclosed for aligning substrates during successive process steps, such as ion implantation steps, is disclosed. Implanted regions are created on a substrate. After implantation, an image is obtained of the implanted regions, and a fiducial is provided on the substrate in known relation to at least one of the implanted regions. A thermal anneal process is performed on the substrate such that the implanted regions are no longer visible but the fiducial remains visible. The position of the fiducial may be used in downstream process steps to properly align pattern masks over the implanted regions. The fiducial also may be applied to the substrate before any ion implanting of the substrate is performed. The position of the fiducial with respect to an edge or a corner of the substrate may be used for aligning during downstream process steps. Other embodiments are described and claimed.
    Type: Grant
    Filed: April 27, 2012
    Date of Patent: November 25, 2014
    Assignee: Varian Semiconductor Equipment Associates, Inc.
    Inventors: John W. Graff, Benjamin B. Riordon, Nicholas P. T. Bateman
  • Publication number: 20140224310
    Abstract: One method of implanting a workpiece involves implanting the workpiece with an n-type dopant in a first region with center and a periphery. The workpiece also is implanted with a p-type dopant in a second region complementary to the first region. This second region also has a center and a periphery. The periphery of the first region and the periphery of the second region at least partially overlap. A dose at the periphery of the first region or second region is less than a dose at the center of the first region or second region. The region of overlap may function as a junction where charge carriers cannot pass.
    Type: Application
    Filed: April 15, 2014
    Publication date: August 14, 2014
    Inventors: Nicholas P.T. Bateman, Peter F. Kurunczi, Benjamin B. Riordon, John W. Graff
  • Patent number: 8697559
    Abstract: One method of implanting a workpiece involves implanting the workpiece with an n-type dopant in a first region with center and a periphery. The workpiece also is implanted with a p-type dopant in a second region complementary to the first region. This second region also has a center and a periphery. The periphery of the first region and the periphery of the second region at least partially overlap. A dose at the periphery of the first region or second region is less than a dose at the center of the first region or second region. The region of overlap may function as a junction where charge carriers cannot pass.
    Type: Grant
    Filed: July 7, 2011
    Date of Patent: April 15, 2014
    Assignee: Varian Semiconductor Equipment Associates, Inc.
    Inventors: Nicholas P. T. Bateman, Peter L. Kurunczi, Benjamin B. Riordon, John W. Graff
  • Publication number: 20130288400
    Abstract: A system and method are disclosed for aligning substrates during successive process steps, such as ion implantation steps, is disclosed. Implanted regions are created on a substrate. After implantation, an image is obtained of the implanted regions, and a fiducial is provided on the substrate in known relation to at least one of the implanted regions. A thermal anneal process is performed on the substrate such that the implanted regions are no longer visible but the fiducial remains visible. The position of the fiducial may be used in downstream process steps to properly align pattern masks over the implanted regions. The fiducial also may be applied to the substrate before any ion implanting of the substrate is performed. The position of the fiducial with respect to an edge or a corner of the substrate may be used for aligning during downstream process steps. Other embodiments are described and claimed.
    Type: Application
    Filed: April 27, 2012
    Publication date: October 31, 2013
    Applicant: VARIAN SEMICONDUCTOR EQUIPMENT ASSOCIATES, INC.
    Inventors: John W. Graff, Benjamin B. Riordon, Nicholas P.T. Bateman
  • Publication number: 20130126933
    Abstract: Electronic device contact structures are disclosed.
    Type: Application
    Filed: June 28, 2012
    Publication date: May 23, 2013
    Applicant: Luminus Devices, Inc.
    Inventors: Alexei A. Erchak, Elefterios Lidorikis, John W. Graff
  • Publication number: 20130008494
    Abstract: One method of implanting a workpiece involves implanting the workiece with an n-type dopant in a first region with center and a periphery. The workpiece also is implanted with a p-type dopant in a second region complementary to the first region. This second region also has a center and a periphery. The periphery of the first region and the periphery of the second region at least partially overlap. A dose at the periphery of the first region or second region is less than a dose at the center of the first region or second region. The region of overlap may function as a junction where charge carriers cannot pass.
    Type: Application
    Filed: July 7, 2011
    Publication date: January 10, 2013
    Applicant: VARIAN SEMICONDUCTOR EQUIPMENT ASSOCIATES, INC.
    Inventors: Nicholas P.T. Bateman, Peter L. Kurunczi, Benjamin B. Riordon, John W. Graff