Patents by Inventor John W. Lewellen

John W. Lewellen has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11810774
    Abstract: A method for making field emission devices so that they have emitter tips in the form of a needle-like point with a width and length configured such that ratio of the width to the length ranges from about 0.001 to about 0.05, and associated methods for making the tips by 3-D printing.
    Type: Grant
    Filed: August 26, 2021
    Date of Patent: November 7, 2023
    Assignee: Government of the United States as represented by the Secretary of the Air Force
    Inventors: Joseph M. Connelly, John R. Harris, John W. Lewellen
  • Patent number: 11527806
    Abstract: A waveguide flange adapter includes a plate; an aperture positioned through the plate; and a plurality of holes arranged in a pattern in the plate and around the aperture. The plate is configured to operatively connect a first waveguide to a second waveguide such that the first waveguide and the second waveguide have a different pattern of holes on the waveguide flanges to one another. The pattern of the plurality of holes may be configured to align with connecting holes in each of the first waveguide and the second waveguide. At least some of the plurality of holes may extend through an entire thickness of the plate. The plate may include electrically-conductive material. The size and shape of the aperture may be complementary to a size and shape of each of the first waveguide and the second waveguide. At least some of the plurality of holes may be tapped or untapped.
    Type: Grant
    Filed: June 4, 2020
    Date of Patent: December 13, 2022
    Assignee: United States of America as represented by the Secretary of the Air Force
    Inventors: John W. Lewellen, Rufus Cooksey, John R. Harris
  • Publication number: 20220068584
    Abstract: A method for making field emission devices so that they have emitter tips in the form of a needle-like point with a width and length configured such that ratio of the width to the length ranges from about 0.001 to about 0.05, and associated methods for making the tips by 3-D printing.
    Type: Application
    Filed: August 26, 2021
    Publication date: March 3, 2022
    Applicant: Government of the United States, as represented by the Secretary of the Air Force
    Inventors: Joseph M. Connelly, John R. Harris, John W. Lewellen
  • Patent number: 10211505
    Abstract: Provided is a resonant structure including a microwave cavity and a sideline radio-frequency (RF) power coupler including: an inner conductor; an outer conductor sharing a central axis with the inner conductor, the outer conductor being electrically coupled to an outer wall of the microwave cavity; and an insulation layer between the inner conductor and the outer conductor.
    Type: Grant
    Filed: June 6, 2017
    Date of Patent: February 19, 2019
    Assignee: Triad National Security, LLC
    Inventors: John W. Lewellen, IV, Dinh Cong Nguyen, Cynthia Eileen Buechler, Gregory E. Dale, Dale Allen Dalmas
  • Patent number: 7760054
    Abstract: An RF cavity is provided with a plurality of tubes that are formed into a tubular cage in a predefined shape to define the RF cavity. A selected number of tubes and a selected tube diameter are provided to form a confinement cage for the RF fields within the RF cavity defined by the tubes. The multiple, small metal tubes are selectively bent to form different cavity shapes and sizes as needed to accelerate the particles and function as a confinement cage for the RF fields within the RF cavity defined by the tubes. The cost to fabricate RF cavities using the tubular cage design is significantly lower than the cost of producing a solid cavity using conventional fabrication technology.
    Type: Grant
    Filed: May 10, 2007
    Date of Patent: July 20, 2010
    Assignee: UChicago Argonne, LLC
    Inventors: John W. Lewellen, John Noonan, Terry L. Smith, Geoff Waldschmidt
  • Patent number: 7573053
    Abstract: A method and an electron source are provided for generating polarized electrons for an electron microscope. The electron source includes a photoemissive cathode and a low-power drive laser. The geometry of the photoemissive cathode uses a generally planar emission surface, which is imaged to approximately 1/100 its initial size via electrostatic focusing elements. The virtual emitter, or image spot, then is used as an electron source by a conventional microscope column.
    Type: Grant
    Filed: January 22, 2007
    Date of Patent: August 11, 2009
    Assignee: UChicago Argonne, LLC
    Inventors: John W. Lewellen, John Noonan
  • Patent number: 7394201
    Abstract: A novel method of gating electron emission from field-emitter cathodes for radio frequency (RF) electrode guns and a novel cathode that provides a focused electron beam without the need for magnetic fields or a curved cathode surface are provided. The phase and strength of a predefined harmonic field, such as the 3rd harmonic field, are adjusted relative to a fundamental field to cause a field emission cathode to emit electrons at predefined times for the generation of high-brightness electron beams. The emission time is gated responsive to the combined harmonic and fundamental fields and the response of the FE cathode to the combined fields. A planar focusing cathode includes a selected dielectric material, such as a ceramic material, to provide an electron beam emission surface. Metal surfaces are provided both radially around and behind the dielectric material to shape the electric fields that accelerate and guide the beam from the cathode surface.
    Type: Grant
    Filed: October 11, 2005
    Date of Patent: July 1, 2008
    Assignee: UChicago Argonne, LLC
    Inventors: John W. Lewellen, John Noonan
  • Publication number: 20080042784
    Abstract: An RF cavity is provided with a plurality of tubes that are formed into a tubular cage in a predefined shape to define the RF cavity. A selected number of tubes and a selected tube diameter are provided to form a confinement cage for the RF fields within the RF cavity defined by the tubes. The multiple, small metal tubes are selectively bent to form different cavity shapes and sizes as needed to accelerate the particles and function as a confinement cage for the RF fields within the RF cavity defined by the tubes. The cost to fabricate RF cavities using the tubular cage design is significantly lower than the cost of producing a solid cavity using conventional fabrication technology.
    Type: Application
    Filed: May 10, 2007
    Publication date: February 21, 2008
    Inventors: John W. Lewellen, John Noonan, Terry L. Smith, Geoff Waldschmidt
  • Patent number: 7312461
    Abstract: A laparoscopic tumor therapy method and an articulated electron beam transport system are provided for use with a high power, long focus electron source for tumor therapy. The high power, long focus electron source generates an e-beam. The e-beam is transported through a laparoscopic tube proximate a target tumor for electron irradiation therapy.
    Type: Grant
    Filed: June 2, 2005
    Date of Patent: December 25, 2007
    Assignee: UChicago Argonne LLC
    Inventors: John W. Lewellen, John Noonan
  • Publication number: 20070228286
    Abstract: A method and an electron source are provided for generating polarized electrons for an electron microscope. The electron source includes a photoemissive cathode and a low-power drive laser. The geometry of the photoemissive cathode uses a generally planar emission surface, which is imaged to approximately 1/100 its initial size via electrostatic focusing elements. The virtual emitter, or image spot, then is used as an electron source by a conventional microscope column.
    Type: Application
    Filed: January 22, 2007
    Publication date: October 4, 2007
    Inventors: John W. Lewellen, John Noonan
  • Patent number: 7250727
    Abstract: Beam processing methods including e-beam welding and e-beam evaporation for thin film deposition are implemented with a novel high power, long focus electron source. The high power, long focus electron source generates an e-beam. The e-beam is transported through a series of steering magnets to steer the beam. At least one refocusing magnet is provided to refocus the e-beam. A final steering magnet bends the e-beam to focus on a target, such as a weld joint or a deposition target.
    Type: Grant
    Filed: June 2, 2005
    Date of Patent: July 31, 2007
    Assignee: UChicago Argonne LLC
    Inventors: John W. Lewellen, John Noonan
  • Patent number: 6987361
    Abstract: A novel method of gating electron emission from field-emitter cathodes for radio frequency (RF) electrode guns and a novel cathode that provides a focused electron beam without the need for magnetic fields or a curved cathode surface are provided. The phase and strength of a predefined harmonic field, such as the 3rd harmonic field, are adjusted relative to a fundamental field to cause a field emission cathode to emit electrons at predefined times for the generation of high-brightness electron beams. The emission time is gated responsive to the combined harmonic and fundamental fields and the response of the FE cathode to the combined fields. A planar focusing cathode includes a selected dielectric material, such as a ceramic material, to provide an electron beam emission surface. Metal surfaces are provided both radially around and behind the dielectric material to shape the electric fields that accelerate and guide the beam from the cathode surface.
    Type: Grant
    Filed: July 8, 2004
    Date of Patent: January 17, 2006
    Assignee: The University of Chicago
    Inventors: John W. Lewellen, John Noonan
  • Patent number: 6911091
    Abstract: Systems and methods are described for environmental exchange control for a polymer on a wafer surface. An apparatus for controlling an exchange between an environment and a polymer on a surface of a wafer located in the environment includes: a chamber adapted to hold the wafer, define the environment, and maintain the polymer in an adjacent relationship with the environment; and a heater coupled to the chamber. A method for improving performance of a spin-on material includes: forming the spin-on material on a surface of a wafer; then locating the spin-on material in an environment so that said environment is adjacent said spin-on material; and then controlling an exchange between the spin-on material and said environment. The systems and methods provide advantages because inappropriate deprotection is mitigated by careful control of the environmental temperature and environmental species partial pressures (e.g. relative humidity).
    Type: Grant
    Filed: June 3, 2002
    Date of Patent: June 28, 2005
    Assignee: ASML Netherlands B.V.
    Inventors: Emir Gurer, Ed C. Lee, Tom Zhong, Kevin Golden, John W. Lewellen, Scott C. Wackerman, Reese Reynolds
  • Patent number: 6844027
    Abstract: Systems and methods are described for environmental exchange control for a polymer on a wafer surface. An apparatus for controlling an exchange between an environment and a polymer on a surface of a wafer located in the environment includes: a chamber adapted to hold the wafer, define the environment, and maintain the polymer in an adjacent relationship with the environment; and a heater coupled to the chamber. A method for improving performance of a spin-on material includes: forming the spin-on material on a surface of a wafer; then locating the spin-on material in an environment so that said environment is adjacent said spin-on material; and then controlling an exchange between the spin-on material and said environment. The systems and methods provide advantages because inappropriate deprotection is mitigated by careful control of the environmental temperature and environmental species partial pressures (e.g. relative humidity).
    Type: Grant
    Filed: May 2, 2000
    Date of Patent: January 18, 2005
    Assignee: ASML Holding N.V.
    Inventors: Emir Gurer, Ed C. Lee, Tom Zhong, Kevin Golden, John W. Lewellen, Scott C. Wackerman, Reese Reynolds
  • Patent number: 6780461
    Abstract: Systems and methods are described for environmental exchange control for a polymer on a wafer surface. An apparatus for controlling an exchange between an environment and a polymer on a surface of a wafer located in the environment includes: a chamber adapted to hold the wafer, define the environment, and maintain the polymer in an adjacent relationship with the environment; and a heater coupled to the chamber. A method for improving performance of a spin-on material includes: forming the spin-on material on a surface of a wafer; then locating the spin-on material in an environment so that said environment is adjacent said spin-on material; and then controlling an exchange between the spin-on material and said environment. The systems and methods provide advantages because inappropriate deprotection is mitigated by careful control of the environmental temperature and environmental species partial pressures (e.g. relative humidity).
    Type: Grant
    Filed: March 1, 2001
    Date of Patent: August 24, 2004
    Assignee: ASML Holding N.V.
    Inventors: Emir Gurer, Ed C. Lee, Tom Zhong, Kevin Golden, John W. Lewellen, Scott C. Wackerman, Reese Reynolds
  • Patent number: 6662466
    Abstract: A process for drying a polymeric material present on a substrate is provided. Temperatures of the polymeric material is measured and the ambient temperature in the vicinity of the substrate. A temperature of the substrate is also measured. A variation in the measured ambient temperature is detected. The substrate temperature, polymeric temperature, ambient temperature or a substrate drying spin speed is adjusted in response to the detected variation in the measured ambient temperature.
    Type: Grant
    Filed: December 11, 2001
    Date of Patent: December 16, 2003
    Assignee: ASML Holdings, N.V.
    Inventors: Emir Gurer, Tom Zhong, John W. Lewellen, Eddie Lee
  • Publication number: 20030010289
    Abstract: Systems and methods are described for environmental exchange control for a polymer on a wafer surface. An apparatus for controlling an exchange between an environment and a polymer on a surface of a wafer located in the environment includes: a chamber adapted to hold the wafer, define the environment, and maintain the polymer in an adjacent relationship with the environment; and a heater coupled to the chamber.
    Type: Application
    Filed: June 3, 2002
    Publication date: January 16, 2003
    Inventors: Emir Gurer, Ed C. Lee, Tom Zhong, Kevin Golden, John W. Lewellen, Scott C. Wackerman, Reese Reynolds
  • Patent number: 6468586
    Abstract: Systems and methods are described for environmental exchange control for a polymer on a wafer surface. An apparatus for controlling an exchange between an environment and a polymer on a surface of a wafer located in the environment includes: a chamber adapted to hold the wafer, define the environment, and maintain the polymer in an adjacent relationship with the environment; and a heater coupled to the chamber. A method for improving performance of a spin-on material includes: forming the spin-on material on a surface of a wafer; then locating the spin-on material in an environment so that said environment is adjacent said spin-on material; and then controlling an exchange between the spin-on material and said environment. The systems and methods provide advantages because inappropriate deprotection is mitigated by careful control of the environmental temperature and environmental species partial pressures (e.g. relative humidity).
    Type: Grant
    Filed: May 8, 2000
    Date of Patent: October 22, 2002
    Assignee: Silicon Valley Group, Inc.
    Inventors: Emir Gurer, Ed C. Lee, Tom Zhong, Kevin Golden, John W. Lewellen, Scott C. Wackerman, Reese Reynolds
  • Publication number: 20020112370
    Abstract: A process for drying a polymeric material present on a substrate is provided. Temperatures of the polymeric material is measured and the ambient temperature in the vicinity of the substrate. A temperature of the substrate is also measured. A variation in the measured ambient temperature is detected. The substrate temperature, polymeric temperature, ambient temperature or a substrate drying spin speed is adjusted in response to the detected variation in the measured ambient temperature.
    Type: Application
    Filed: December 11, 2001
    Publication date: August 22, 2002
    Inventors: Emir Gurer, Tom Zhong, John W. Lewellen, Eddie Lee
  • Patent number: 6327793
    Abstract: A process for drying a polymeric material present on a substrate is provided. Temperatures of the polymeric material is measured and the ambient temperature in the vicinity of the substrate. A temperature of the substrate is also measured. A variation in the measured ambient temperature is detected. The substrate temperature, polymeric temperature, ambient temperature or a substrate drying spin speed is adjusted in response to the detected variation in the measured ambient temperature.
    Type: Grant
    Filed: March 20, 2000
    Date of Patent: December 11, 2001
    Assignee: Silicon Valley Group
    Inventors: Emir Gurer, Tom Zhong, John W. Lewellen, Eddie Lee