Patents by Inventor John W. Mosier

John W. Mosier has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20020074585
    Abstract: A power MOSFET transistor is formed on a substrate including a source, body layer, and drain layer and an optional fourth layer for an IGBT. The device is characterized by a conductive gate having a high conductivity metal layer coextensive with a polysilicon layer for high power and high speed operation.
    Type: Application
    Filed: February 22, 2002
    Publication date: June 20, 2002
    Applicant: ADVANCED POWER TECHNOLOGY, INC., Delaware corporation
    Inventors: Dah Wen Tsang, John W. Mosier, Douglas A. Pike, Theodore O. Meyer
  • Patent number: 5801417
    Abstract: A recessed gate power MOSFET is formed on a substrate (20) including a P-body layer (26), N-drain layer (24) and optional P+ layer (22) for IGBT. A trenching protective layer (30) formed on the substrate upper surface (28) is patterned to define exposed areas (46) as stripes or a matrix, and protected areas. Sidewall spacers (44) of predetermined thickness (52) with inner surfaces (48) contact the protective layer sidewalls. A first trench (50) is formed in substrate areas (46) with sidewalls aligned to the sidewall spacer outer surfaces (47) and extending depthwise through the P-body layer (26) to at least a predetermined depth (56). Gate oxide (60) is formed on the trench walls and gate polysilicon (62) refills the trench to a level (64) near substrate upper surface (28). Oxide (68) between sidewall spacers (44) covers polysilicon (62). Removing the protective layer exposes upper substrate surface (28') between spacer inner surfaces (48).
    Type: Grant
    Filed: August 13, 1993
    Date of Patent: September 1, 1998
    Assignee: Advanced Power Technology, Inc.
    Inventors: Dah Wen Tsang, John W. Mosier, II, Douglas A. Pike, Jr., Theodore O. Meyer
  • Patent number: 5648283
    Abstract: A gate power MOSFET on substrate (20) has a P-body layer (26), N-drain layer (24) and optional P+ layer (22) for IGBT. Layer (430) on surface (28) patterns areas (446) as stripes or a matrix, and protected areas. Undercut sidewalls (444) of thickness (452), with protruding rims (447), contact the sides of layer (434'). Trench (450) in areas (446) has silicon sidewalls aligned to oxide sidewall (447) and extending depthwise through P-body layer (26) to depth (456). Gate oxide (460) is formed on the trench walls and gate polysilicon (462) refills trench (450) to a level (464) near surface (28) demarcated by the undercut sidewall rims (447). Oxide (468) between spacers (444) covers polysilicon (462). Removing layer (430) exposes surface (28') between the sidewalls (444). Source layer (72) is doped atop the body layer (26') and then trenched to form trench (80) having sidewalls aligned to inner side faces of sidewalls (444).
    Type: Grant
    Filed: January 31, 1994
    Date of Patent: July 15, 1997
    Assignee: Advanced Power Technology, Inc.
    Inventors: Dah Wen Tsang, Dumitru Sdrulla, Douglas A. Pike, Jr., Theodore O. Meyer, John W. Mosier, II, deceased
  • Patent number: 5283201
    Abstract: A recessed gate power MOSFET is formed on a substrate (20) including a P-body layer (26), N-drain layer (24) and optional P+ layer (22) for IGBT. A trenching protective layer (30) formed on the substrate upper surface (28) is patterned to define exposed areas (46) as stripes or a matrix, and protected areas. Sidewall spacers (44) of predetermined thickness (52) with inner surfaces (48) contact the protective layer sidewalls. A first trench (50) is formed in substrate areas (46) with sidewalls aligned to the sidewall spacer outer surfaces (47) and extending depthwise through the P-body layer (26) to at least a predetermined depth (56). Gate oxide (60) is formed on the trench walls and gate polysilicon (62) refills the trench to a level (64) near substrate upper surface (28). Oxide (68) between sidewall spacers (44) covers polysilicon (62). Removing the protective layer exposes upper substrate surface (28') between spacer inner surfaces (48).
    Type: Grant
    Filed: August 7, 1992
    Date of Patent: February 1, 1994
    Assignee: Advanced Power Technology, Inc.
    Inventors: Dah W. Tsang, John W. Mosier, II, Douglas A. Pike, Jr., Theodore O. Meyer
  • Patent number: 5045903
    Abstract: A dopant-opaque layer of polysilicon is deposited on gate oxide on the upper substrate surface to serve as a pattern definer during fabrication of the device. It provides control over successive P and N doping steps used to create the necessary operative junctions within a silicon substrate and the conductive structures formed atop the substrate. A trench is formed in the upper silicon surface and a source conductive layer is deposited to electrically contact the source region as a gate conductive layer is deposited atop the gate oxide layer. The trench sidewall is profile tailored using a novel O.sub.2 -SF.sub.6 plasma etch technique. An oxide sidewall spacer is formed on the sides of the pattern definer and gate oxide structures, before depositing the conductive material. A planarizing layer is applied and used as a mask for selectively removing any conductive material deposited atop the oxide spacer.
    Type: Grant
    Filed: November 16, 1989
    Date of Patent: September 3, 1991
    Assignee: Advanced Power Technology, Inc.
    Inventors: Theodore O. Meyer, John W. Mosier, II, Douglas A. Pike, Jr., Theodore G. Hollinger, Dah W. Tsang
  • Patent number: 5019522
    Abstract: A dopant-opaque layer of polysilicon is deposited on gate oxide on the upper substrate surface to serve as a pattern definer during fabrication of the device. It provides control over successive P and N doping steps used to create the necessary operative junctions within a silicon substrate and the conductive structures formed atop the substrate. A trench is formed in the upper silicon surface and a source conductive layer is deposited to electrically contact the source region as a gate conductive layer is deposited atop the gate oxide layer. The trench sidewall is profile tailored using a novel O.sub.2 -SF.sub.6 plasma etch technique. An oxide sidewall spacer is formed on the sides of the pattern definer and gate oxide structure, before depositing the conductive material. A planarizing layer is applied and used as a mask for selectively removing any conductive material deposited atop the oxide spacer.
    Type: Grant
    Filed: January 2, 1990
    Date of Patent: May 28, 1991
    Assignee: Advanced Power Technology, Inc.
    Inventors: Theodore O. Meyer, John W. Mosier, II, Douglas A. Pike, Jr., Theodore G. Hollinger, Dah W. Tsang
  • Patent number: 4895810
    Abstract: A dopant-opaque layer of polysilicon is deposited on gate oxide on the upper substrate surface to serve as a pattern definer during fabrication of the device. It provides control over successive P and N doping steps used to create the necessary operative junctions within a silicon substrate and the conductive structures formed atop the substrate. A trench is formed in the upper silicon surface and a source conductive layer is deposited to electrically contact the source region as a gate conductive layer is deposited atop the gate oxide layer. The trench sidewall is profile tailored using a novel O.sub.2 --SF.sub.6 plasma etch technique. An oxide sidewall spacer is formed on the sides of the pattern definer and gate oxide structures, before depositing the conductive material. A planarizing layer is applied and used as a mask for selectively removing any conductive material deposited atop the oxide spacer.
    Type: Grant
    Filed: May 17, 1988
    Date of Patent: January 23, 1990
    Assignee: Advanced Power Technology, Inc.
    Inventors: Theodore O. Meyer, John W. Mosier, II, Douglas A. Pike, Jr., Theodore G. Hollinger