Patents by Inventor John William Krawczyk

John William Krawczyk has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7766455
    Abstract: Micro-fluid ejection head structures, methods of making micro-fluid ejection head structures having improved operability, and methods for improving the durability of micro-fluid ejection head structures are provided. One such micro-fluid ejection head structure includes a micro-fluid ejection head having a substrate and nozzle plate assembly adhesively attached adjacent to a substrate support using a substrate adhesive. The nozzle plate is adhesively attached adjacent to the substrate with a nozzle plate adhesive. A thermally, UV or other cure mechanism encapsulant material is attached adjacent to the ejection head and substrate support. Each of the substrate adhesive, and the encapsulant material, after curing, have a Young's modulus of less than about 2000 MPa, a shear modulus at 25° C. of less than about 15 MPa, and a glass transition temperature of less than about 90° C.
    Type: Grant
    Filed: November 3, 2006
    Date of Patent: August 3, 2010
    Assignee: Lexmark International, Inc.
    Inventors: David Christopher Graham, Brian Christopher Hart, Gary Anthony Holt, Jr., John William Krawczyk, Sean Terrence Weaver, Mary Claire Smoot
  • Publication number: 20080083700
    Abstract: Methods for processing wafers, wafer processing apparatus, micro-fluid ejection head substrates, and etching process are provided. One such method includes applying a clamping voltage to an electrostatic chuck sufficient to hold a wafer in a substantially planerized orientation adjacent to the electrostatic chuck. A heat transfer fluid flows through a three dimensional space between the wafer and the electrostatic chuck to cool the wafer by convective heat transfer during wafer processing.
    Type: Application
    Filed: November 21, 2006
    Publication date: April 10, 2008
    Applicant: LEXMARK INTERNATIONAL, INC.
    Inventors: David Laurier Bernard, Paul William Dryer, John William Krawczyk, Andrew Lee McNees, Girish Shivaji Patil, Richard Lee Warner
  • Publication number: 20080007595
    Abstract: A micro-fluid ejection head structure, methods for making micro-fluid ejection head structures, and methods for etching polymeric nozzle plates. One such micro-fluid ejection head structuring includes a substrate having a plurality of fluid ejection actuators. A thick film layer is attached adjacent the substrate. The thick film layer has a fluid chamber and a fluid flow channel capable of providing fluid to the fluid chamber. A polymeric nozzle plate is attached adjacent the thick film layer. The polymeric nozzle plate includes a nozzle capable of being in fluid communication with one or more of the fluid flow chambers. The nozzle is a plasma etched nozzle defined by a photoresist mask layer.
    Type: Application
    Filed: July 10, 2006
    Publication date: January 10, 2008
    Inventors: John William Krawczyk, Andrew Lee McNees, Girish Shivaji Patil
  • Patent number: 7273266
    Abstract: A micro-fluid ejection assembly including a silicon substrate having accurately formed fluid paths therein. The fluid paths are formed by a deep reactive ion etching process conducted on a substrate having a surface characteristic before etching selected from the group consisting of a dielectric layer thickness of no more than about 5000 Angstroms, and a substantially dielectric material free pitted surface wherein a root mean square depth of surface pitting is less than about 500 Angstroms and a maximum surface pitting depth is no more than about 2500 Angstroms. Fluid paths in such substrates having improved flow characteristics for more reliable fluid ejection operations.
    Type: Grant
    Filed: April 14, 2004
    Date of Patent: September 25, 2007
    Assignee: Lexmark International, Inc.
    Inventors: John William Krawczyk, Andrew Lee McNees, James Michael Mrvos, Carl Edmond Sullivan