Patents by Inventor John Winterbottom

John Winterbottom has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10322209
    Abstract: Biological-based polyurethanes and methods of making the same. The polyurethanes are formed by reacting a biodegradable polyisocyanate (such as lysine diisocyanate) with an optionally hydroxylated biomolecule to form polyurethane. The polymers formed may be combined with ceramic and/or bone particles to form a composite, which may be used as an osteoimplant.
    Type: Grant
    Filed: May 8, 2018
    Date of Patent: June 18, 2019
    Assignee: Warsaw Orthopedic, Inc.
    Inventors: David Knaack, John Winterbottom, David R. Kaes, Todd Boyce, Lawrence A. Shimp
  • Patent number: 10080661
    Abstract: An osteoimplant composite comprising a plurality of particles of an inorganic material, a bone substitute material, a bone-derived material, or any combination thereof; and a polymer material with which the particles are combined. The composite is either naturally moldable or flowable, or it can be made moldable or settable. After implantation, the composite may be set to provide mechanical strength to the implant. The inventive composite have the advantage of being able to fill irregularly shape implantation site while at the same time being settable to provide the mechanical strength required for most orthopedic applications. The invention also provides methods of using and preparing the moldable and flowable composites.
    Type: Grant
    Filed: May 9, 2016
    Date of Patent: September 25, 2018
    Assignee: Warsaw Orthopedic, Inc.
    Inventors: Deger C. Tunc, John Winterbottom, David R. Kaes, Todd Boyce, David Knaack, James Russell, Subhabrata Bhattacharyya
  • Publication number: 20180250442
    Abstract: Biological-based polyurethanes and methods of making the same. The polyurethanes are formed by reacting a biodegradable polyisocyanate (such as lysine diisocyanate) with an optionally hydroxylated biomolecule to form polyurethane. The polymers formed may be combined with ceramic and/or bone particles to form a composite, which may be used as an osteoimplant.
    Type: Application
    Filed: May 8, 2018
    Publication date: September 6, 2018
    Inventors: David Knaack, John Winterbottom, David R. Kaes, Todd Boyce, Lawrence A. Shimp
  • Patent number: 10028837
    Abstract: A covering for delivering a substance or material to a surgical site is provided. The covering, with substance provided therein, may be referred to as a delivery system. Generally, the covering may be a single or multi-compartment structure capable of at least partially retaining a substance provided therein until the covering is placed at a surgical site. Upon placement, the covering may facilitate transfer of the substance or surrounding materials. For example, the substance may be released (actively or passively) to the surgical site. The covering may participate in, control, or otherwise adjust, the release of the substance.
    Type: Grant
    Filed: May 6, 2016
    Date of Patent: July 24, 2018
    Assignee: Warsaw Orthopedic, Inc.
    Inventors: Guobao Wei, Keyvan Behnam, Nanette Forsyth, John Winterbottom, James Beisser, Todd Boyce, Mohamed Attawia, Cristy J. Richards, Lawrence A. Shimp
  • Patent number: 9993579
    Abstract: Biological-based polyurethanes and methods of making the same. The polyurethanes are formed by reacting a biodegradable polyisocyanate (such as lysine diisocyanate) with an optionally hydroxylated biomolecule to form polyurethane. The polymers formed may be combined with ceramic and/or bone particles to form a composite, which may be used as an osteoimplant.
    Type: Grant
    Filed: July 6, 2017
    Date of Patent: June 12, 2018
    Assignee: Warsaw Orthopedic, Inc.
    Inventors: David Knaack, John Winterbottom, David R. Kaes, Todd M. Boyce, Lawrence A. Shimp
  • Patent number: 9849215
    Abstract: Methods for forming implantable compositions are provided. In some embodiments, the methods include (i) providing a gel base, (ii) adding water and a hydrating agent to the gel base to form a mixture, (iii) reducing the water content of the mixture; and (iv) adding a delivered material before, during, and/or after step (ii) or (iii). The water content is reduced to about 5% or less by weight of the implantable composition.
    Type: Grant
    Filed: February 19, 2016
    Date of Patent: December 26, 2017
    Assignee: Warsaw Orthopedic, Inc.
    Inventors: Christina Mossaad, Lawrence A. Shimp, Guobao Wei, John Winterbottom
  • Publication number: 20170304496
    Abstract: Biological-based polyurethanes and methods of making the same. The polyurethanes are formed by reacting a biodegradable polyisocyanate (such as lysine diisocyanate) with an optionally hydroxylated biomolecule to form polyurethane. The polymers formed may be combined with ceramic and/or bone particles to form a composite, which may be used as an osteoimplant.
    Type: Application
    Filed: July 6, 2017
    Publication date: October 26, 2017
    Inventors: David Knaack, John Winterbottom, David R. Kaes, Todd M. Boyce, Lawrence A. Shimp
  • Patent number: 9789223
    Abstract: Biological-based polyurethanes and methods of making the same. The polyurethanes are formed by reacting a biodegradable polyisocyanate (such as lysine diisocyanate) with an optionally hydroxylated biomolecule to form polyurethane. The polymers formed may be combined with ceramic and/or bone particles to form a composite, which may be used as an osteoimplant.
    Type: Grant
    Filed: May 2, 2016
    Date of Patent: October 17, 2017
    Assignee: Warsaw Orthopedic, Inc.
    Inventors: David Knaack, John Winterbottom, David R. Kaes, Todd M. Boyce, Lawrence A. Shimp
  • Patent number: 9492278
    Abstract: A covering for delivering a substance or material to a surgical site is provided. The covering, with substance provided therein, may be referred to as a delivery system. Generally, the covering may be a single or multi-compartment structure capable of at least partially retaining a substance provided therein until the covering is placed at a surgical site. Upon placement, the covering may facilitate transfer of the substance or surrounding materials. For example, the substance may be released (actively or passively) to the surgical site. The covering may participate in, control, or otherwise adjust, the release of the substance.
    Type: Grant
    Filed: July 10, 2008
    Date of Patent: November 15, 2016
    Assignee: Warsaw Orthopedic, Inc.
    Inventors: Guobao Wei, Nanette Forsyth, John Winterbottom, James Beisser, Todd M. Boyce, Sigurd H. Berven, Randal R. Betz, Michael F. O'Brien, Alexis P. Shelokov
  • Publication number: 20160250025
    Abstract: An osteoimplant composite comprising a plurality of particles of an inorganic material, a bone substitute material, a bone-derived material, or any combination thereof; and a polymer material with which the particles are combined. The composite is either naturally moldable or flowable, or it can be made moldable or settable. After implantation, the composite may be set to provide mechanical strength to the implant. The inventive composite have the advantage of being able to fill irregularly shape implantation site while at the same time being settable to provide the mechanical strength required for most orthopedic applications. The invention also provides methods of using and preparing the moldable and flowable composites.
    Type: Application
    Filed: May 9, 2016
    Publication date: September 1, 2016
    Inventors: Deger C. Tunc, John Winterbottom, David R. Kaes, Todd Boyce, David Knaack, James Russell, Subhabrata Bhattacharyya
  • Publication number: 20160250038
    Abstract: A covering for delivering a substance or material to a surgical site is provided. The covering, with substance provided therein, may be referred to as a delivery system. Generally, the covering may be a single or multi-compartment structure capable of at least partially retaining a substance provided therein until the covering is placed at a surgical site. Upon placement, the covering may facilitate transfer of the substance or surrounding materials. For example, the substance may be released (actively or passively) to the surgical site. The covering may participate in, control, or otherwise adjust, the release of the substance.
    Type: Application
    Filed: May 6, 2016
    Publication date: September 1, 2016
    Inventors: Guobao Wei, Keyvan Behnam, Nanette Forsyth, John Winterbottom, James Beisser, Todd Boyce, Mohamed Attawia, Cristy J. Richards, Lawrence A. Shimp
  • Publication number: 20160243284
    Abstract: Biological-based polyurethanes and methods of making the same. The polyurethanes are formed by reacting a biodegradable polyisocyanate (such as lysine diisocyanate) with an optionally hydroxylated biomolecule to form polyurethane. The polymers formed may be combined with ceramic and/or bone particles to form a composite, which may be used as an osteoimplant.
    Type: Application
    Filed: May 2, 2016
    Publication date: August 25, 2016
    Inventors: David Knaack, John Winterbottom, David R. Kaes, Todd M. Boyce, Lawrence A. Shimp
  • Patent number: 9415136
    Abstract: An osteoinductive demineralized bone matrix, corresponding osteoimplants, and methods for making the osteoinductive demineralized bone matrix are disclosed. The osteoinductive demineralized bone matrix may be prepared by providing demineralized bone and altering the collagenous structure of the bone. The osteoinductive demineralized bone matrix may also be prepared by providing demineralized bone and compacting the bone, for example via mechanical compaction, grinding into a particulate, or treatment with a chemical. Additives such as growth factors or bioactive agents may be added to the osteoinductive demineralized bone matrix. The osteoinductive demineralized bone matrix may form an osteogenic osteoimplant. The osteoimplant, when implanted in a mammalian body, may induce at the locus of the implant the full developmental cascade of endochondral bone formation including vascularization, mineralization, and bone marrow differentiation.
    Type: Grant
    Filed: May 23, 2014
    Date of Patent: August 16, 2016
    Assignee: Warsaw Orthopedic, Inc.
    Inventors: Keyvan Behnam, Nanette Forsyth, James Russell, John Winterbottom, Todd Boyce
  • Publication number: 20160166729
    Abstract: Methods for forming implantable compositions are provided. In some embodiments, the methods include (i) providing a gel base, (ii) adding water and a hydrating agent to the gel base to form a mixture, (iii) reducing the water content of the mixture; and (iv) adding a delivered material before, during, and/or after step (ii) or (iii). The water content is reduced to about 5% or less by weight of the implantable composition.
    Type: Application
    Filed: February 19, 2016
    Publication date: June 16, 2016
    Inventors: Christina Mossaad, Lawrence A. Shimp, Guobao Wei, John Winterbottom
  • Patent number: 9358113
    Abstract: A covering for delivering a substance or material to a surgical site is provided. The covering, with substance provided therein, may be referred to as a delivery system. Generally, the covering may be a single or multi-compartment structure capable of at least partially retaining a substance provided therein until the covering is placed at a surgical site. Upon placement, the covering may facilitate transfer of the substance or surrounding materials. For example, the substance may be released (actively or passively) to the surgical site. The covering may participate in, control, or otherwise adjust, the release of the substance.
    Type: Grant
    Filed: July 10, 2008
    Date of Patent: June 7, 2016
    Assignee: Warsaw Orthopedic, Inc.
    Inventors: Guobao Wei, Keyvan Behnam, Nanette Forsyth, John Winterbottom, James Beisser, Todd M. Boyce
  • Patent number: 9333080
    Abstract: An osteoimplant composite comprising a plurality of particles of an inorganic material, a bone substitute material, a bone-derived material, or any combination thereof; and a polymer material with which the particles are combined. The composite is either naturally moldable or flowable, or it can be made moldable or settable. After implantation, the composite may be set to provide mechanical strength to the implant. The inventive composite have the advantage of being able to fill irregularly shape implantation site while at the same time being settable to provide the mechanical strength required for most orthopedic applications. The invention also provides methods of using and preparing the moldable and flowable composites.
    Type: Grant
    Filed: August 21, 2013
    Date of Patent: May 10, 2016
    Assignee: Warsaw Orthopedic, Inc.
    Inventors: Deger C. Tunc, John Winterbottom, David R. Kaes, Todd M. Boyce, David Knaack, James Russell, Subhabrata Bhattacharyya
  • Patent number: 9333082
    Abstract: A covering for delivering a substance or material to a surgical site is provided. The covering, with substance provided therein, may be referred to as a delivery system. Generally, the covering may be a single or multi-compartment structure capable of at least partially retaining a substance provided therein until the covering is placed at a surgical site. Upon placement, the covering may facilitate transfer of the substance or surrounding materials. For example, the substance may be released (actively or passively) to the surgical site. The covering may participate in, control, or otherwise adjust, the release of the substance.
    Type: Grant
    Filed: September 5, 2008
    Date of Patent: May 10, 2016
    Assignee: Warsaw Orthopedic, Inc.
    Inventors: Guobao Wei, Keyvan Behnam, Nanette Forsyth, John Winterbottom, James Beisser, Todd M. Boyce, Mohamed Attawia, Cristy J. Richards, Lawrence A. Shimp
  • Patent number: 9327052
    Abstract: Biological-based polyurethanes and methods of making the same. The polyurethanes are formed by reacting a biodegradable polyisocyanate (such as lysine diisocyanate) with an optionally hydroxylated biomolecule to form polyurethane. The polymers formed may be combined with ceramic and/or bone particles to form a composite, which may be used as an osteoimplant.
    Type: Grant
    Filed: April 22, 2013
    Date of Patent: May 3, 2016
    Assignee: Warsaw Orthopedic, Inc.
    Inventors: David A. Knaack, John Winterbottom, David R. Kaes, Todd M. Boyce, Lawrence A. Shimp
  • Patent number: 9308292
    Abstract: A composite osteoimplant. The osteoimplant includes a polymer and bone-derived particles. The composite is adapted and constructed to be formable during or immediately prior to implantation and to be set after final surgical placement.
    Type: Grant
    Filed: November 5, 2007
    Date of Patent: April 12, 2016
    Assignee: Warsaw Orthopedic, Inc.
    Inventors: John Winterbottom, David Kaes
  • Patent number: 9265830
    Abstract: Methods for forming implantable compositions are provided. In some embodiments, the methods include (i) providing a gel base, (ii) adding water and a hydrating agent to the gel base to form a mixture, (iii) reducing the water content of the mixture; and (iv) adding a delivered material before, during, and/or after step (ii) or (iii). The water content is reduced to about 5% or less by weight of the implantable composition.
    Type: Grant
    Filed: April 20, 2011
    Date of Patent: February 23, 2016
    Assignee: Warsaw Orthopedic, Inc.
    Inventors: Christina Mossaad, Lawrence A. Shimp, Guobao Wei, John Winterbottom