Patents by Inventor John Winterflood
John Winterflood has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 8074515Abstract: A gravity gradiometer is disclosed which has a sensor in the form of bars (41 and 42) which are supported on a mounting (5) which has a first mount section (10) and a second mount section (20). A first flexure web (33) pivotally couples the first and second mount sections about a first axis. The second mount has a first part (25), a second part (26) and a third part (27). The parts (25 and 26) are connected by a second flexure web (37) and the parts (26 and 27) are connected by a third flexure web (35). The bars (41 and 42) are located in housings (45 and 47) and form a monolithic structure with the housings (45 and 47) respectively. The housings (45 and 47) are connected to opposite sides of the second mount section 20. The bars (41 and 42) are connected to their respective housings by flexure webs (59). Transducers (71) are located in proximity to the bars for detecting movement of the bars to in turn enable the gravitational gradient tensor to be measured.Type: GrantFiled: March 1, 2010Date of Patent: December 13, 2011Assignee: Technological Resources Pty. Ltd.Inventors: Frank Joachim Van Kann, John Winterflood
-
Patent number: 7980130Abstract: A gravity gradiometer is disclosed which has a sensor in the form of bars (41 and 42) which are supported on a mounting (5) which has a first mount section (10) and a second mount section (20). A first flexure web (33) pivotally couples the first and second mount sections about a first axis. The second mount has a first part (25), a second part (26) and a third part (27). The parts (25 and 26) are connected by a second flexure web (37) and the parts (26 and 27) are connected by a third flexure web (35). The bars (41 and 42) are located in housings (45 and 47) and form a monolithic structure with the housings (45 and 47) respectively. The housings (45 and 47) are connected to opposite sides of the second mount section 20. The bars (41 and 42) are connected to their respective housings by flexure webs (59). Transducers (71) are located in proximity to the bars for detecting movement of the bars to in turn enable the gravitational gradient tensor to be measured.Type: GrantFiled: December 28, 2009Date of Patent: July 19, 2011Assignee: Technological Resources Pty. Ltd.Inventors: Frank Joachim Kann, John Winterflood
-
Patent number: 7975544Abstract: A gravity gradiometer is disclosed which has a sensor in the form of bars (41 and 42) which are supported on a mounting (5) which has a first mount section (10) and a second mount section (20). A first flexure web (33) pivotally couples the first and second mount sections about a first axis. The second mount has a first part (25), a second part (26) and a third part (27). The parts (25 and 26) are connected by a second flexure web (37) and the parts (26 and 27) are connected by a third flexure web (35). The bars (41 and 42) are located in housings (45 and 47) and form a monolithic structure with the housings (45 and 47) respectively. The housings (45 and 47) are connected to opposite sides of the second mount section 20. The bars (41 and 42) are connected to their respective housings by flexure webs (59). Transducers (71) are located in proximity to the bars for detecting movement of the bars to in turn enable the gravitational gradient tensor to be measured.Type: GrantFiled: December 23, 2009Date of Patent: July 12, 2011Assignee: Technological Resources Pty. Ltd.Inventors: Frank Joachim Van Kann, John Winterflood
-
Patent number: 7942054Abstract: A gravity gradiometer is disclosed which has a sensor in the form of bars (41 and 42) which are supported on a mounting (5) which has a first mount section (10) and a second mount section (20). A first flexure web (33) pivotally couples the first and second mount sections about a first axis. The second mount has a first part (25), a second part (26) and a third part (27). The parts (25 and 26) are connected by a second flexure web (37) and the parts (26 and 27) are connected by a third flexure web (35). The bars (41 and 42) are located in housings (45 and 47) and form a monolithic structure with the housings (45 and 47) respectively. The housings (45 and 47) are connected to opposite sides of the second mount section 20. The bars (41 and 42) are connected to their respective housings by flexure webs (59). Transducers (71) are located in proximity to the bars for detecting movement of the bars to in turn enable the gravitational gradient tensor to be measured.Type: GrantFiled: December 23, 2009Date of Patent: May 17, 2011Assignee: Technological Resources PTY. Ltd.Inventors: Frank Joachim Van Kann, John Winterflood
-
Patent number: 7938003Abstract: A gravity gradiometer is disclosed which has a sensor in the form of bars (41 and 42) which are supported on a mounting (5) which has a first mount section (10) and a second mount section (20). A first flexure web (33) pivotally couples the first and second mount sections about a first axis. The second mount has a first part (25), a second part (26) and a third part (27). The parts (25 and 26) are connected by a second flexure web (37) and the parts (26 and 27) are connected by a third flexure web (35). The bars (41 and 42) are located in housings (45 and 47) and form a monolithic structure with the housings (45 and 47) respectively. The housings (45 and 47) are connected to opposite sides of the second mount section 20. The bars (41 and 42) are connected to their respective housings by flexure webs (59). Transducers (71) are located in proximity to the bars for detecting movement of the bars to in turn enable the gravitational gradient tensor to be measured.Type: GrantFiled: December 21, 2009Date of Patent: May 10, 2011Assignee: Technological Resources PTY. LimitedInventors: Frank Joachim Van Kann, John Winterflood
-
Patent number: 7849739Abstract: A gravity gradiometer is described which comprises a pair of sensor bars arranged in housings. Transducers are arranged adjacent the bars for measuring movement of the bars in response to the gravity gradient tensor. At least one of the transducers has a sensing coil and a capacitor plate having a concentric arrangement with the sensing coil for providing one plate of a capacitor used in a balancing circuit for measuring the balance of the sensor mass.Type: GrantFiled: August 27, 2007Date of Patent: December 14, 2010Assignee: Technological Resources PTY. Ltd.Inventors: Frank Joachim Van Kann, John Winterflood
-
Patent number: 7823449Abstract: A gravity gradiometer and method for forming a pivot flexure web for a gradiometer is disclosed. The gradiometer has measurement bars 41, 43 supported in housings 45 and 47 and transducers 71 for measuring movement of the bars to provide an indication of the gravity gradient tensor. The bars 41, 43 are mounted on flexure webs. The webs are formed in separate elements to the housing and bars.Type: GrantFiled: August 27, 2007Date of Patent: November 2, 2010Assignee: Technological Resources Pty, Ltd.Inventors: Frank Joachim Van Kann, John Winterflood
-
Patent number: 7823448Abstract: A gravity gradiometer is disclosed which has a sensor in the form of bars (41 and 42) which are supported on a mounting (5) which has a first mount section (10) and a second mount section (20). A first flexure web (33) pivotally couples the first and second mount sections about a first axis. The second mount has a first part (25), a second part (26) and a third part (27). The parts (25 and 26) are connected by a second flexure web (37) and the parts (26 and 27) are connected by a third flexure web (35). The bars (41 and 42) are located in housings (45 and 47) and form a monolithic structure with the housings (45 and 47) respectively. The housings (45 and 47) are connected to opposite sides of the second mount section 20. The bars (41 and 42) are connected to their respective housings by flexure webs (59). Transducers (71) are located in proximity to the bars for detecting movement of the bars to in turn enable the gravitational gradient tensor to be measured.Type: GrantFiled: August 31, 2006Date of Patent: November 2, 2010Assignee: Technological Resources Pty. Ltd.Inventors: Frank Joachim Van Kann, John Winterflood
-
Patent number: 7788974Abstract: A gravity gradiometer is disclosed which has a sensor in the form of bars (41 and 42) which are supported on a mounting (5) which has a first mount section (10) and a second mount section (20). A first flexure web (33) pivotally couples the first and second mount sections about a first axis. The second mount has a first part (25), a second part (26) and a third part (27). The parts (25 and 26) are connected by a second flexure web (37) and the parts (26 and 27) are connected by a third flexure web (35). The bars (41 and 42) are located in housings (45 and 47) and form a monolithic structure with the housings (45 and 47) respectively. The housings (45 and 47) are connected to opposite sides of the second mount section 20. The bars (41 and 42) are connected to their respective housings by flexure webs (59). Transducers (71) are located in proximity to the bars for detecting movement of the bars to in turn enable the gravitational gradient tensor to be measured.Type: GrantFiled: August 31, 2006Date of Patent: September 7, 2010Assignee: Technological Resources Pty. Ltd.Inventors: Frank Joachim Van Kann, John Winterflood, Anthony Gordon Mann
-
Patent number: 7784343Abstract: A gravity gradiometer is disclosed which has a sensor in the form of bars (41 and 42) which are supported on a mounting (5) which has a first mount section (10) and a second mount section (20). A first flexure web (33) pivotally couples the first and second mount sections about a first axis. The second mount has a first part (25), a second part (26) and a third part (27). The parts (25 and 26) are connected by a second flexure web (37) and the parts (26 and 27) are connected by a third flexure web (35). The bars (41 and 42) are located in housings (45 and 47) and form a monolithic structure with the housings (45 and 47) respectively. The housings (45 and 47) are connected to opposite sides of the second mount section 20. The bars (41 and 42) are connected to their respective housings by flexure webs (59). Transducers (71) are located in proximity to the bars for detecting movement of the bars to in turn enable the gravitational gradient tensor to be measured.Type: GrantFiled: August 31, 2006Date of Patent: August 31, 2010Assignee: Technological Resources PTY. Ltd.Inventors: Frank Joachim Van Kann, John Winterflood
-
Publication number: 20100154536Abstract: A gravity gradiometer is disclosed which has a sensor in the form of bars (41 and 42) which are supported on a mounting (5) which has a first mount section (10) and a second mount section (20). A first flexure web (33) pivotally couples the first and second mount sections about a first axis. The second mount has a first part (25), a second part (26) and a third part (27). The parts (25 and 26) are connected by a second flexure web (37) and the parts (26 and 27) are connected by a third flexure web (35). The bars (41 and 42) are located in housings (45 and 47) and form a monolithic structure with the housings (45 and 47) respectively. The housings (45 and 47) are connected to opposite sides of the second mount section 20. The bars (41 and 42) are connected to their respective housings by flexure webs (59). Transducers (71) are located in proximity to the bars for detecting movement of the bars to in turn enable the gravitational gradient tensor to be measured.Type: ApplicationFiled: December 21, 2009Publication date: June 24, 2010Applicant: Technological Resources Pty. LimitedInventors: Frank Joachim Van Kann, John Winterflood
-
Publication number: 20100154537Abstract: A gravity gradiometer is disclosed which has a sensor in the form of bars (41 and 42) which are supported on a mounting (5) which has a first mount section (10) and a second mount section (20). A first flexure web (33) pivotally couples the first and second mount sections about a first axis. The second mount has a first part (25), a second part (26) and a third part (27). The parts (25 and 26) are connected by a second flexure web (37) and the parts (26 and 27) are connected by a third flexure web (35). The bars (41 and 42) are located in housings (45 and 47) and form a monolithic structure with the housings (45 and 47) respectively. The housings (45 and 47) are connected to opposite sides of the second mount section 20. The bars (41 and 42) are connected to their respective housings by flexure webs (59). Transducers (71) are located in proximity to the bars for detecting movement of the bars to in turn enable the gravitational gradient tensor to be measured.Type: ApplicationFiled: March 1, 2010Publication date: June 24, 2010Applicant: TECHNOLOGICAL RESOURCES PTY. LTD.Inventors: Frank Joachim Van Kann, John Winterflood
-
Publication number: 20100107756Abstract: A gravity gradiometer is disclosed which has a sensor in the form of bars (41 and 42) which are supported on a mounting (5) which has a first mount section (10) and a second mount section (20). A first flexure web (33) pivotally couples the first and second mount sections about a first axis. The second mount has a first part (25), a second part (26) and a third part (27). The parts (25 and 26) are connected by a second flexure web (37) and the parts (26 and 27) are connected by a third flexure web (35). The bars (41 and 42) are located in housings (45 and 47) and form a monolithic structure with the housings (45 and 47) respectively. The housings (45 and 47) are connected to opposite sides of the second mount section 20. The bars (41 and 42) are connected to their respective housings by flexure webs (59). Transducers (71) are located in proximity to the bars for detecting movement of the bars to in turn enable the gravitational gradient tensor to be measured.Type: ApplicationFiled: December 28, 2009Publication date: May 6, 2010Applicant: Technological Resources PTY, Ltd.Inventors: Frank Joachim Van Kann, John Winterflood
-
Publication number: 20100095766Abstract: A gravity gradiometer is disclosed which has a sensor in the form of bars (41 and 42) which are supported on a mounting (5) which has a first mount section (10) and a second mount section (20). A first flexure web (33) pivotally couples the first and second mount sections about a first axis. The second mount has a first part (25), a second part (26) and a third part (27). The parts (25 and 26) are connected by a second flexure web (37) and the parts (26 and 27) are connected by a third flexure web (35). The bars (41 and 42) are located in housings (45 and 47) and form a monolithic structure with the housings (45 and 47) respectively. The housings (45 and 47) are connected to opposite sides of the second mount section 20. The bars (41 and 42) are connected to their respective housings by flexure webs (59). Transducers (71) are located in proximity to the bars for detecting movement of the bars to in turn enable the gravitational gradient tensor to be measured.Type: ApplicationFiled: December 23, 2009Publication date: April 22, 2010Applicant: Technological Resources PTY. Ltd.Inventors: Frank Joachim Van Kann, John Winterflood
-
Publication number: 20100095765Abstract: A gravity gradiometer is disclosed which has a sensor in the form of bars (41 and 42) which are supported on a mounting (5) which has a first mount section (10) and a second mount section (20). A first flexure web (33) pivotally couples the first and second mount sections about a first axis. The second mount has a first part (25), a second part (26) and a third part (27). The parts (25 and 26) are connected by a second flexure web (37) and the parts (26 and 27) are connected by a third flexure web (35). The bars (41 and 42) are located in housings (45 and 47) and form a monolithic structure with the housings (45 and 47) respectively. The housings (45 and 47) are connected to opposite sides of the second mount section 20. The bars (41 and 42) are connected to their respective housings by flexure webs (59). Transducers (71) are located in proximity to the bars for detecting movement of the bars to in turn enable the gravitational gradient tensor to be measured.Type: ApplicationFiled: December 23, 2009Publication date: April 22, 2010Applicant: Technological Resources PTY. Ltd.Inventors: Frank Joachim Van Kann, John Winterflood
-
Patent number: 7637153Abstract: A gravity gradiometer is disclosed which comprises a pair of sensor masses arranged in housings. Transducers are provided for measuring movement of the sensor masses in response to the gravity gradient tensor. The masses are supported for movement by a flexure web between the mass and a support and a stop comprises a pair of abutment services defined by a cut prevent movement of the sensor masses beyond the elastic limit of the flexure web.Type: GrantFiled: August 27, 2007Date of Patent: December 29, 2009Assignee: Technological Resources PTY. Ltd.Inventors: Frank Joachim Van Kann, John Winterflood
-
Patent number: 7627954Abstract: A gradiometer is disclosed which has a pair of sensor bars 41, 43 supported in housings 45, 47. Transducers 71 are located adjacent the bars 41, 43 to detect movement of the bars in response to the gravity gradient tensor. At least one of the transducers 71 comprises a first coil 510 and a second coil 516 arranged in parallel and a switch 362 for proportioning current between the coils 510 and 516 so as to create a virtual coil at a position D between the coils 510 and 516.Type: GrantFiled: August 27, 2007Date of Patent: December 8, 2009Assignee: Technological Resources Pty. Ltd.Inventors: Frank Joachim Van Kann, John Winterflood
-
Publication number: 20090293611Abstract: A gravity gradiometer and method for forming a pivot flexure web for a gradiometer is disclosed. The gradiometer has measurement bars 41, 43 supported in housings 45 and 47 and transducers 71 for measuring movement of the bars to provide an indication of the gravity gradient tensor. The bars 41, 43 are mounted on flexure webs. The webs are formed in separate elements to the housing and bars.Type: ApplicationFiled: August 27, 2007Publication date: December 3, 2009Applicant: Technological Resources PTY. Ltd.Inventors: Frank Joachim Van Kann, John Winterflood
-
Patent number: 7624635Abstract: A heat switch 570 is disclosed as well as a gradiometer having the heat switch. The heat switch is formed from a non-magnetic material such as a semi-conducting material. The semi-conducting material may be provided by way of a Hall effect device. The heat switches are arranged in the gradiometer on a circuit board 856. The circuit board 850 has conducting strips 856 which are connected to conducting strips on a sensor 71 by bridges 852. The heat switch 570 is connected on the opposite side of the circuit board 850 to the strips 856 and processing circuitry 859. A copper substrate 865 is provided on the same side of the circuit board as the heat switch 570 to conduct heat away from the heat switch 570 when the heat switch is closed.Type: GrantFiled: August 27, 2007Date of Patent: December 1, 2009Assignee: Technological Resources Pty. Ltd.Inventors: Frank Joachim Van Kann, John Winterflood
-
Publication number: 20090260433Abstract: A gravity gradiometer is disclosed which has a sensor in the form of bars (41 and 42) which are supported on a mounting (5) which has a first mount section (10) and a second mount section (20). A first flexure web (33) pivotally couples the first and second mount sections about a first axis. The second mount has a first part (25), a second part (26) and a third part (27). The parts (25 and 26) are connected by a second flexure web (37) and the parts (26 and 27) are connected by a third flexure web (35). The bars (41 and 42) are located in housings (45 and 47) and form a monolithic structure with the housings (45 and 47) respectively. The housings (45 and 47) are connected to opposite sides of the second mount section 20. The bars (41 and 42) are connected to their respective housings by flexure webs (59). Transducers (71) are located in proximity to the bars for detecting movement of the bars to in turn enable the gravitational gradient tensor to be measured.Type: ApplicationFiled: August 31, 2006Publication date: October 22, 2009Applicant: TECHNOLOGICAL RESOURCES PTY. LIMITEDInventors: Frank Joachim Van Kann, John Winterflood