Patents by Inventor John Yurkas

John Yurkas has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20050260833
    Abstract: A deposition member adapted for discharging a deposition material during a deposition process can acquire a coating during the deposition. Such an initial emissivity value is selected for the deposition member, before any of the coating became deposited, that the emissivity of the deposition member remains substantially unchanged during the deposition process. In a representative embodiment the deposition member is coated with an appropriate thin layer for achieving the selected emissivity value.
    Type: Application
    Filed: May 22, 2004
    Publication date: November 24, 2005
    Inventors: Fenton McFeely, John Yurkas, Sandra Malhotra, Andrew Simon
  • Publication number: 20050250318
    Abstract: Compounds of Ta and N, potentially including further elements, and with a resistivity below about 20 m?cm and with the elemental ratio of N to Ta greater than about 0.9 are disclosed for use as gate materials in field effect devices. A representative embodiment of such compounds, TaSiN, is stable at typical CMOS processing temperatures on SiO2 containing dielectric layers and high-k dielectric layers, with a workfunction close to that of n-type Si. Metallic Ta—N compounds are deposited by a chemical vapor deposition method using an alkylimidotris(dialkylamido)Ta species, such as tertiaryamylimidotris(dimethylamido)Ta (TAIMATA), as Ta precursor. The deposition is conformal allowing for flexible introduction of the Ta—N metallic compounds into a CMOS processing flow. Devices processed with TaN or TaSiN show near ideal characteristics.
    Type: Application
    Filed: July 13, 2005
    Publication date: November 10, 2005
    Inventors: Vijay Narayanan, Fenton McFeely, Keith Milkove, John Yurkas, Matthew Copel, Paul Jamison, Roy Carruthers, Cyril Cabral, Edmund Sikorskii, Elizabeth Duch, Alessandro Callegari, Sufi Zafar, Kazuhito Nakamura
  • Publication number: 20050227441
    Abstract: A method for forming a tantalum-containing gate electrode structure by providing a substrate having a high-k dielectric layer thereon in a process chamber and forming a tantalum-containing layer on the high-k dielectric layer in a thermal chemical vapor deposition process by exposing the substrate to a process gas containing TAIMATA (Ta(N(CH3)2)3(NC(C2H5)(CH3)2)) precursor gas. In one embodiment of the invention, the tantalum-containing layer can include a TaSiN layer formed from a process gas containing TAIMATA precursor gas, a silicon containing gas, and optionally a nitrogen-containing gas. In another embodiment of the invention, a TaN layer is formed on the TaSiN layer. The TaN layer can be formed from a process gas containing TAIMATA precursor gas and optionally a nitrogen-containing gas. A computer readable medium executable by a processor to cause a processing system to perform the method and a processing system for forming a tantalum-containing gate electrode structure are also provided.
    Type: Application
    Filed: March 31, 2004
    Publication date: October 13, 2005
    Inventors: Kazuhito Nakamura, Hideaki Yamasaki, Yumiko Kawano, Gert Leusink, Fenton McFeely, John Yurkas, Vijay Narayanan
  • Publication number: 20050221000
    Abstract: A method and a processing tool are provided for forming a metal layer with improved morphology on a substrate. The method includes pre-treating the substrate by exposing the substrate to excited species in a plasma, exposing the pre-treated substrate to a process gas containing a metal-carbonyl precursor, and forming a metal layer on the pre-treated substrate surface by a chemical vapor deposition process. The metal-carbonyl precursor can contain W(CO)6, Ni(CO)4, Mo(CO)6, CO2(CO)8, Rh4(CO)12, Re2(CO)10, Cr(CO)6, or Ru3(CO)12 or any combination thereof, and the metal layer can contain W, Ni, Mo, Co, Rh, Re, Cr, or Ru, or any combination thereof, respectively.
    Type: Application
    Filed: March 31, 2004
    Publication date: October 6, 2005
    Applicants: Tokyo Electron Limited, International Business Machines Corporation
    Inventors: Taro Ikeda, Tsukasa Matsuda, Fenton McFeely, Sandra Malhotra, Andrew Simon, John Yurkas
  • Publication number: 20050110142
    Abstract: A solid state device includes a first material and a second material. A barrier layer is formed between the first material and the second material to prevent diffusion between the first material and the second material. The barrier layer includes a metal form of at least one of Ru and Re. The barrier layer is preferably formed using a low temperature deposition process, where the substrate is less than 400 degrees C.
    Type: Application
    Filed: November 26, 2003
    Publication date: May 26, 2005
    Inventors: Michael Lane, Christian Lavoie, Sandra Malhotra, Fenton McFeely, John Yurkas
  • Publication number: 20050104142
    Abstract: Compounds of Ta and N, potentially including further elements, and with a resistivity below about 20 m?cm and with the elemental ratio of N to Ta greater than about 0.9 are disclosed for use as gate materials in field effect devices. A representative embodiment of such compounds, TaSiN, is stable at typical CMOS processing temperatures on SiO2 containing dielectric layers and high-k dielectric layers, with a workfunction close to that of n-type Si. Metallic Ta—N compounds are deposited by a chemical vapor deposition method using an alkylimidotris(dialkylamido)Ta species, such as tertiaryamylimidotris(dimethylamido)Ta (TAIMATA), as Ta precursor. The deposition is conformal allowing for flexible introduction of the Ta—N metallic compounds into a CMOS processing flow. Devices processed with TaN or TaSiN show near ideal characteristics.
    Type: Application
    Filed: November 13, 2003
    Publication date: May 19, 2005
    Inventors: Vijav Narayanan, Fenton McFeely, Keith Milkove, John Yurkas, Matthew Copel, Paul Jamison, Roy Carruthers, Cyril Cabral, Edmund Sikorskii, Elizabeth Duch, Alessandro Callegari, Sufi Zafar, Kazuhito Nakamura
  • Publication number: 20050069641
    Abstract: A method for depositing metal layers with good surface morphology using sequential flow deposition includes alternately exposing a substrate in a process chamber to a metal-carbonyl precursor gas and a reducing gas. During exposure with the metal-carbonyl precursor gas, a thin metal layer is deposited on the substrate, and subsequent exposure of the metal layer to the reducing gas aids in the removal of reaction by-products from the metal layer. The metal-carbonyl precursor gas and a reducing gas exposure steps can be repeated until a metal layer with a desired thickness is achieved. The metal-carbonyl precursor can, for example, be selected from W(CO)6, Ni(CO)4, Mo(CO)6, Co2(CO)8, Rh4(CO)12, Re2(CO)10, Cr(CO)6, and Ru3(CO)12.
    Type: Application
    Filed: September 30, 2003
    Publication date: March 31, 2005
    Applicants: Tokyo Electron Limited, International Business Machines Corporation
    Inventors: Tsukasa Matsuda, Taro Ikeda, Tatsuo Hatano, Mitsuhiro Tachibana, Hideaki Yamasaki, Gert Leusink, Fenton McFeely, Sandra Malhotra, Andrew Simon, John Yurkas
  • Publication number: 20050069632
    Abstract: A method is provided for forming a metal layer on a substrate using an intermittent precursor gas flow process. The method includes exposing the substrate to a reducing gas while exposing the substrate to pulses of a metal-carbonyl precursor gas. The process is carried out until a metal layer with desired thickness is formed on the substrate. The metal layer can be formed on a substrate, or alternately, the metal layer can be formed on a metal nucleation layer.
    Type: Application
    Filed: September 30, 2003
    Publication date: March 31, 2005
    Applicants: Tokyo Electron Limited, International Business Machines Corporation
    Inventors: Hideaki Yamasaki, Tsukasa Matsuda, Atsushi Gomi, Tatsuo Hatano, Mitsuhiro Tachibana, Koumei Matsuzava, Yumiko Kawano, Gert Leusink, Fenton McFeely, Sandra Malhotra, Andrew Simon, John Yurkas