Patents by Inventor John Z. Zhong

John Z. Zhong has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11175762
    Abstract: Disclosed herein are liquid-crystal display (LCD) touch screens that integrate the touch sensing elements with the display circuitry. The integration may take a variety of forms. Touch sensing elements can be completely implemented within the LCD stackup but outside the not between the color filter plate and the array plate. Alternatively, some touch sensing elements can be between the color filter and array plates with other touch sensing elements not between the plates. In another alternative, all touch sensing elements can be between the color filter and array plates. The latter alternative can include both conventional and in-plane-switching (IPS) LCDs. In some forms, one or more display structures can also have a touch sensing function. Techniques for manufacturing and operating such displays, as well as various devices embodying such displays are also disclosed.
    Type: Grant
    Filed: January 17, 2019
    Date of Patent: November 16, 2021
    Assignee: Apple Inc.
    Inventors: Steve Porter Hotelling, Wei Chen, Christoph Horst Krah, John Greer Elias, Wei Hsin Yao, Andrew Bert Hodge, Brian Richards Land, Willem den Boer, John Z. Zhong
  • Publication number: 20210223904
    Abstract: Display layers and touch sensor layers may be overlapped by enclosure walls in an electronic device. The electronic device may have a front wall and opposing rear wall and curved sidewalls. The front wall and the curved sidewalls may be formed from a glass layer or other transparent member. A touch sensor layer and display layer may extend under the glass layer with curved sidewalls. A touch sensor layer may also extend under the opposing rear wall. A foldable electronic device may have a flexible transparent wall portion that joins planar transparent walls. Components may be interposed between the transparent planar walls and opaque walls. Display and touch layers may be overlapped by the transparent walls and the transparent flexible wall portion. Touch sensor structures may also be overlapped by the opaque walls.
    Type: Application
    Filed: April 7, 2021
    Publication date: July 22, 2021
    Inventors: Isaac W. Chan, Chun-Hao Tung, Fletcher R. Rothkopf, Sunggu Kang, John Z. Zhong
  • Patent number: 10983390
    Abstract: An electronic device display may have a color filter layer and a thin film transistor layer. A layer of liquid crystal material may be interposed between the color filter layer and the thin film transistor layer. A layer of polarizer may be laminated onto the surface of the color filter layer. Laser trimming may ensure that the edges of the polarizer are even with the edges of the color filter layer. The thin film transistor layer may have an array of thin film transistors that control pixels of the liquid crystal material in the display. Driver circuitry may be used to control the array. The driver circuitry may be encapsulated in a planarized encapsulant on the thin film transistor layer or may be mounted to the underside of the color filter layer. Conductive structures may connect driver circuitry on the color filter layer to the thin film transistor layer.
    Type: Grant
    Filed: February 19, 2019
    Date of Patent: April 20, 2021
    Assignee: Apple Inc.
    Inventors: Dinesh C. Mathew, Thomas W. Wilson, Jr., Victor H. Yin, Bryan W. Posner, Chris Ligtenberg, Brett W. Degner, Peteris K. Augenbergs, John Z. Zhong, Steve Hotelling, Lynn Youngs, Kuo-Hua Sung
  • Patent number: 10983626
    Abstract: Display layers and touch sensor layers may be overlapped by enclosure walls in an electronic device. The electronic device may have a front wall and opposing rear wall and curved sidewalls. The front wall and the curved sidewalls may be formed from a glass layer or other transparent member. A touch sensor layer and display layer may extend under the glass layer with curved sidewalls. A touch sensor layer may also extend under the opposing rear wall. A foldable electronic device may have a flexible transparent wall portion that joins planar transparent walls. Components may be interposed between the transparent planar walls and opaque walls. Display and touch layers may be overlapped by the transparent walls and the transparent flexible wall portion. Touch sensor structures may also be overlapped by the opaque walls.
    Type: Grant
    Filed: May 19, 2016
    Date of Patent: April 20, 2021
    Assignee: Apple Inc.
    Inventors: Isaac W. Chan, Chun-Hao Tung, Fletcher R. Rothkopf, Sunggu Kang, John Z. Zhong
  • Patent number: 10976846
    Abstract: Disclosed herein are liquid-crystal display (LCD) touch screens that integrate the touch sensing elements with the display circuitry. The integration may take a variety of forms. Touch sensing elements can be completely implemented within the LCD stackup but outside the not between the color filter plate and the array plate. Alternatively, some touch sensing elements can be between the color filter and array plates with other touch sensing elements not between the plates. In another alternative, all touch sensing elements can be between the color filter and array plates. The latter alternative can include both conventional and in-plane-switching (IPS) LCDs. In some forms, one or more display structures can also have a touch sensing function. Techniques for manufacturing and operating such displays, as well as various devices embodying such displays are also disclosed.
    Type: Grant
    Filed: December 21, 2018
    Date of Patent: April 13, 2021
    Assignee: Apple Inc.
    Inventors: Steve Porter Hotelling, Wei Chen, Christoph Horst Krah, John Greer Elias, Wei Hsin Yao, Andrew Bert Hodge, Brian Richards Land, Willem den Boer, John Z. Zhong
  • Publication number: 20210089168
    Abstract: An electronic device with a force sensing device is disclosed. The electronic device comprises a user input surface defining an exterior surface of the electronic device, a first capacitive sensing element, and a second capacitive sensing element capacitively coupled to the first capacitive sensing element. The electronic device also comprises a first spacing layer between the first and second capacitive sensing elements, and a second spacing layer between the first and second capacitive sensing elements. The first and second spacing layers have different compositions. The electronic device also comprises sensing circuitry coupled to the first and second capacitive sensing elements configured to determine an amount of applied force on the user input surface. The first spacing layer is configured to collapse if the applied force is below a force threshold, and the second spacing layer is configured to collapse if the applied force is above the force threshold.
    Type: Application
    Filed: December 9, 2020
    Publication date: March 25, 2021
    Inventors: Dhaval C. Patel, Eugene C. Cheung, Pey-Jiun Ko, Po-Jui Chen, Robert W. Rumford, Steve L. Terry, Wei Lin, Xiaofan Niu, Xiaoqi Zhou, Yi Gu, Yindar Chuo, Rasmi R. Das, Steven M. Scardato, Se Hyun Ahn, Victor H. Yin, Wookyung Bae, Christopher L. Boitnott, Chun-Hao Tung, Mookyung Son, Sunggu Kang, Nathan K. Gupta, John Z. Zhong
  • Patent number: 10923013
    Abstract: An electronic device may include a display having an array of display pixels and having display control circuitry that controls the operation of the display. The display control circuitry may adaptively adjust the spectral characteristics of display light emitted from the display to achieve a desired effect on the human circadian system. For example, the display control circuitry may adjust the spectral characteristics of blue light emitted from the display based on the time of day such that a user's exposure to the display light may result in a circadian response similar to that which would be experienced in natural light. The spectral characteristics of blue light emitted from the display may be adjusted by adjusting the relative maximum power levels provided to blue pixels in the display or by shifting the peak wavelength associated with blue light emitted from the display.
    Type: Grant
    Filed: November 7, 2019
    Date of Patent: February 16, 2021
    Assignee: Apple Inc.
    Inventors: Cheng Chen, Deniz Teoman, Jiaying Wu, John Z. Zhong, Jun Jiang
  • Publication number: 20200393715
    Abstract: Electrical shield line systems are provided for openings in common electrodes near data lines of display and touch screens. Some displays, including touch screens, can include multiple common electrodes (Vcom) that can have openings between individual Vcoms. Some display screens can have an open slit between two adjacent edges of Vcom. Openings in Vcom can allow an electric field to extend from a data line through the Vcom layer. A shield can be disposed over the Vcom opening to help reduce or eliminate an electric field from affecting a pixel material, such as liquid crystal. The shield can be connected to a potential such that electric field is generated substantially between the shield and the data line to reduce or eliminate electric fields reaching the liquid crystal.
    Type: Application
    Filed: August 28, 2020
    Publication date: December 17, 2020
    Inventors: Zhibing GE, Cheng-Ho YU, Young-Bae PARK, Abbas JAMSHIDI ROUDBARI, Shih-Chang CHANG, Cheng CHEN, Marduke YOUSEFPOR, John Z. ZHONG
  • Patent number: 10867578
    Abstract: An electronic device may include a display having an array of display pixels and having display control circuitry that controls the operation of the display. The display control circuitry may operate the display in different modes. In a paper mode, display control circuitry may use stored spectral reflectance data to adjust display colors such that the colors appear as they would on a printed sheet of paper. In a low light mode when the ambient light level is below a threshold, the light emitted from the display may be adjusted to mimic the appearance of an incandescent light source. In a bright light mode when the ambient light level exceeds a threshold, the light emitted from the display may be adjusted to maximize readability in bright light. The target white point of the display may be adjusted based on which mode the display is operating in.
    Type: Grant
    Filed: November 16, 2018
    Date of Patent: December 15, 2020
    Assignee: Apple Inc.
    Inventors: Cheng Chen, Jiaying Wu, Will Riedel, Wei Chen, John Z. Zhong
  • Publication number: 20200348789
    Abstract: An electronic device may include a display. The display may be formed by an array of light-emitting diodes mounted to the surface of a substrate. The substrate may be a silicon substrate. Circuitry may be located in spaces between the light-emitting diodes. Circuitry may also be located on the rear surface of the silicon substrate and may be coupled to the array of light-emitting diodes using through-silicon vias. The circuitry may include integrated circuits and other components that are attached to the substrate and may include transistors and other circuitry formed within the silicon substrate. Touch sensor electrodes, light sensors, and other components may be located in the spaces between the light-emitting diodes. The substrate may be formed from a transparent material that allows image light to reach a lens and image sensor mounted below the substrate.
    Type: Application
    Filed: July 22, 2020
    Publication date: November 5, 2020
    Inventors: Wei Chen, Steven P. Hotelling, John Z. Zhong, William C. Athas, Wei H. Yao
  • Patent number: 10761358
    Abstract: Electrical shield line systems are provided for openings in common electrodes near data lines of display and touch screens. Some displays, including touch screens, can include multiple common electrodes (Vcom) that can have openings between individual Vcoms. Some display screens can have an open slit between two adjacent edges of Vcom. Openings in Vcom can allow an electric field to extend from a data line through the Vcom layer. A shield can be disposed over the Vcom opening to help reduce or eliminate an electric field from affecting a pixel material, such as liquid crystal. The shield can be connected to a potential such that electric field is generated substantially between the shield and the data line to reduce or eliminate electric fields reaching the liquid crystal.
    Type: Grant
    Filed: March 3, 2011
    Date of Patent: September 1, 2020
    Assignee: Apple Inc.
    Inventors: Zhibing Ge, Cheng Ho Yu, Young-Bae Park, Abbas Jamshidi Roudbari, Shih Chang Chang, Cheng Chen, Marduke Yousefpor, John Z. Zhong
  • Patent number: 10754066
    Abstract: A display may have an active area in which pixels display images through a transparent display layer. An opaque masking material may be formed in an inactive border area adjacent to the active area. The opaque masking layer may include particles such as carbon black particles to provide the opaque masking layer with a dark appearance. The color of the opaque masking layer may be adjusted by incorporating additional particles such as titanium oxide particles. Particle size for the carbon black particles and the index of refraction of the opaque masking layer may be adjusted to reduce reflectance in the inactive border area. A transparent conductive layer may be supported by the transparent display layer. Index-of-refraction matching layers may be interposed between the transparent conductive layer and the transparent display layer. The opaque masking layer may be interposed between the matching layers in the inactive border area.
    Type: Grant
    Filed: October 15, 2015
    Date of Patent: August 25, 2020
    Assignee: Apple inc.
    Inventors: Chun-Hao Tung, Qian Zhao, Sunggu Kang, John Z. Zhong
  • Patent number: 10739882
    Abstract: An electronic device may include a display. The display may be formed by an array of light-emitting diodes mounted to the surface of a substrate. The substrate may be a silicon substrate. Circuitry may be located in spaces between the light-emitting diodes. Circuitry may also be located on the rear surface of the silicon substrate and may be coupled to the array of light-emitting diodes using through-silicon vias. The circuitry may include integrated circuits and other components that are attached to the substrate and may include transistors and other circuitry formed within the silicon substrate. Touch sensor electrodes, light sensors, and other components may be located in the spaces between the light-emitting diodes. The substrate may be formed from a transparent material that allows image light to reach a lens and image sensor mounted below the substrate.
    Type: Grant
    Filed: August 6, 2014
    Date of Patent: August 11, 2020
    Assignee: Apple Inc.
    Inventors: Wei Chen, Steven P. Hotelling, John Z. Zhong, William C. Athas, Wei H. Yao
  • Patent number: 10725228
    Abstract: An electronic device may generate content that is to be displayed on a display. The display may have an array of liquid crystal display pixels for displaying image frames of the content. The display may be operated in at least a normal viewing mode, a privacy mode, an outdoor viewing mode, and a power saving mode. The different view modes may exhibit different viewing angles. In one configuration, the display may include a backlight unit that generates a collimated light source and that includes a switchable diffuser film for selectively scattering the collimated light source depending on the current viewing mode of the display. In another configuration, the display may include a backlight unit that generates a scattered light source that includes a switchable microarray structure such as a switchable mirror structure or a tunable microlens array for selectively collimating the scattered light source depending on the current viewing mode.
    Type: Grant
    Filed: February 20, 2019
    Date of Patent: July 28, 2020
    Assignee: Apple Inc.
    Inventors: Hyungryul J. Choi, Zhibing Ge, Cheng Chen, Hossein Nemati, Wei Chen, Jun Qi, Khadijeh Bayat, David A. Doyle, John Z. Zhong
  • Publication number: 20200219945
    Abstract: A display may have an array of pixels. Display driver circuitry may supply data and control signals to the pixels. Each pixel may have seven transistors, a capacitor, and a light-emitting diode such as an organic light-emitting diode. The seven transistors may receive control signals using horizontal control lines. Each pixel may have first and second emission enable transistors that are coupled in series with a drive transistor and the light-emitting diode of that pixel. The first and second emission enable transistors may be coupled to a common control line or may be separately controlled so that on-bias stress can be effectively applied to the drive transistor. The display driver circuitry may have gate driver circuits that provide different gate line signals to different rows of pixels within the display. Different rows may also have different gate driver strengths and different supplemental gate line loading structures.
    Type: Application
    Filed: March 23, 2020
    Publication date: July 9, 2020
    Inventors: Cheng-Ho Yu, Chin-Wei Lin, Shyuan Yang, Ting-Kuo Chang, Tsung-Ting Tsai, Warren S. Rieutort-Louis, Shih-Chang Chang, Yu Cheng Chen, John Z. Zhong
  • Publication number: 20200174593
    Abstract: A touch sensitive device that includes a touch sensor having an opaque passivation layer is disclosed. The opaque passivation layer can be made from an organic or inorganic material, such as acrylic. The opaque passivation layer can be positioned in the touch sensitive device between the cover material of the device and conductive traces located on the touch sensor to hide the conductive traces from the user's view and protect the conductive traces from corrosion. Processes for making the touch sensitive devices that include a touch sensor having an opaque passivation layer are also disclosed.
    Type: Application
    Filed: February 7, 2020
    Publication date: June 4, 2020
    Inventors: Seung Jae HONG, Sunggu KANG, Martin Paul GRUNTHANER, John Z. ZHONG
  • Patent number: 10636847
    Abstract: A display may have an array of pixels. Display driver circuitry may supply data and control signals to the pixels. Each pixel may have seven transistors, a capacitor, and a light-emitting diode such as an organic light-emitting diode. The seven transistors may receive control signals using horizontal control lines. Each pixel may have first and second emission enable transistors that are coupled in series with a drive transistor and the light-emitting diode of that pixel. The first and second emission enable transistors may be coupled to a common control line or may be separately controlled so that on-bias stress can be effectively applied to the drive transistor. The display driver circuitry may have gate driver circuits that provide different gate line signals to different rows of pixels within the display. Different rows may also have different gate driver strengths and different supplemental gate line loading structures.
    Type: Grant
    Filed: December 18, 2018
    Date of Patent: April 28, 2020
    Assignee: Apple Inc.
    Inventors: Cheng-Ho Yu, Chin-Wei Lin, Shyuan Yang, Ting-Kuo Chang, Tsung-Ting Tsai, Warren S. Rieutort-Louis, Shih-Chang Chang, Yu Cheng Chen, John Z. Zhong
  • Patent number: 10591645
    Abstract: An electronic device may have transparent members such as display cover layers and camera windows. A transparent member such as a sapphire member may be provided with an antireflection coating. The antireflection coating may have a stack of dielectric thin-film interference filter layers that form a thin-film interference filter that suppresses visible light reflections. The stack of dielectric thin-film interference filter layers may have thicknesses and materials that provide the thin-film interference filter and coating with low light reflection properties while enhancing scratch resistance. An adhesion layer may be used to help adhere the stack of thin-film interference filter layer to the transparent member. An antismudge coating such as a fluoropolymer coating may be used to reduce smudging. Graded layers and layers with elevated hardness values may be used in the coating.
    Type: Grant
    Filed: April 11, 2017
    Date of Patent: March 17, 2020
    Assignee: Apple Inc.
    Inventors: Zhenbin Ge, Xianwei Zhao, Wookyung Bae, Sunggu Kang, Ligang Wang, Avery P. Yuen, Stephen C. Cool, John Z. Zhong
  • Patent number: 10593294
    Abstract: An electronic device may be provided with a display mounted in a housing. Color ambient light sensors may make measurements of ambient light intensity and color through windows in an inactive border region of the display or other portions of the device. The electronic device may process the ambient light measurements based on ambient light information from the ambient light sensors and based on information from additional sensors such as an image sensor, a force sensor, a capacitive touch sensor, a proximity sensor, an orientation sensor, and other devices. Control circuitry in the electronic device may produce reliable ambient light measurements by combining readings from multiple reliable sources and by discarding readings from ambient light sensors that are blocked by a user's fingers or other external objects. Display color cast and intensity may be adjusted based on ambient light information.
    Type: Grant
    Filed: January 8, 2019
    Date of Patent: March 17, 2020
    Assignee: Apple Inc.
    Inventors: Nicolas P. Bonnier, Cheng Chen, Jiaying Wu, Wei Chen, Paul V. Johnson, John Z. Zhong
  • Publication number: 20200074910
    Abstract: An electronic device may include a display having an array of display pixels and having display control circuitry that controls the operation of the display. The display control circuitry may adaptively adjust the spectral characteristics of display light emitted from the display to achieve a desired effect on the human circadian system. For example, the display control circuitry may adjust the spectral characteristics of blue light emitted from the display based on the time of day such that a user's exposure to the display light may result in a circadian response similar to that which would be experienced in natural light. The spectral characteristics of blue light emitted from the display may be adjusted by adjusting the relative maximum power levels provided to blue pixels in the display or by shifting the peak wavelength associated with blue light emitted from the display.
    Type: Application
    Filed: November 7, 2019
    Publication date: March 5, 2020
    Inventors: Cheng Chen, Deniz Teoman, Jiaying Wu, John Z. Zhong, Jun Jiang