Patents by Inventor John Zyskind

John Zyskind has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11901692
    Abstract: A semiconductor laser device is provided. The semiconductor laser device includes: a substrate having a first facet; a guiding layer having a second facet through which an output light is configured to be emitted; a bottom dielectric layer between the substrate and the guiding layer; and a top dielectric layer on the guiding layer. The second facet is at an angle relative to the first facet.
    Type: Grant
    Filed: December 3, 2021
    Date of Patent: February 13, 2024
    Assignee: Skorpios Technologies, Inc.
    Inventors: Murtaza Askari, Stephen B. Krasulick, Majid Sodagar, John Zyskind
  • Patent number: 11557880
    Abstract: A method of fabricating a gain medium includes growing a p-type layer doped with zinc on a substrate, growing an undoped layer including one or both of InP or InGaAsP on the p-type layer, growing a region that includes multiple quantum wells (MQWs) on the undoped layer, and growing an n-type layer on the region. The undoped layer has a thickness that is sufficient to prevent Zn diffusion from the p-type layer into the region during subsequent growth or wafer fabrication steps.
    Type: Grant
    Filed: October 1, 2020
    Date of Patent: January 17, 2023
    Inventors: John Y. Spann, John Zyskind
  • Publication number: 20220166183
    Abstract: A semiconductor laser device is provided. The semiconductor laser device includes: a substrate having a first facet; a guiding layer having a second facet through which an output light is configured to be emitted; a bottom dielectric layer between the substrate and the guiding layer; and a top dielectric layer on the guiding layer. The second facet is at an angle relative to the first facet.
    Type: Application
    Filed: December 3, 2021
    Publication date: May 26, 2022
    Inventors: Murtaza Askari, Stephen B. Krasulick, Majid Sodagar, John Zyskind
  • Patent number: 11079549
    Abstract: A device is provided for optical mode spot size conversion to optically couple a semiconductor waveguide with an optical fiber. The device includes a waveguide comprising a waveguide taper region, which comprises a shoulder portion and a ridge portion above the shoulder portion. The ridge portion has a width that tapers to meet a width of the shoulder portion. The waveguide taper region comprises a first material. The device also has a mode converter coupled to the waveguide. The mode converter includes a plurality of stages, and each of the plurality of stages tapers in a direction similar to a direction of taper of the waveguide taper region. The mode converter is made of a second material different from the first material.
    Type: Grant
    Filed: April 3, 2020
    Date of Patent: August 3, 2021
    Assignee: Skorpios Technologies, Inc.
    Inventors: Majid Sodagar, Stephen B. Krasulick, John Zyskind, Paveen Apiratikul, Luca Cafiero
  • Publication number: 20210184435
    Abstract: A method of fabricating a gain medium includes growing a p-type layer doped with zinc on a substrate, growing an undoped layer including one or both of InP or InGaAsP on the p-type layer, growing a region that includes multiple quantum wells (MQWs) on the undoped layer, and growing an n-type layer on the region. The undoped layer has a thickness that is sufficient to prevent Zn diffusion from the p-type layer into the region during subsequent growth or wafer fabrication steps.
    Type: Application
    Filed: October 1, 2020
    Publication date: June 17, 2021
    Inventors: John Y. Spann, John Zyskind
  • Patent number: 10928588
    Abstract: A device for optical communication is described. The device comprises two transceivers integrated on one chip. A first transceiver can be used with existing optical-communication architecture. As a more advanced optical-communication architecture becomes adopted, the device can be switched from using the first transceiver to using a second transceiver to communicate using the more advanced optical-communication architecture.
    Type: Grant
    Filed: October 15, 2018
    Date of Patent: February 23, 2021
    Assignee: Skorpios Technologies, Inc.
    Inventors: Majid Sodagar, Stephen B. Krasulick, John Zyskind, Paveen Apiratikul, Luca Cafiero
  • Patent number: 10895686
    Abstract: A method of fabricating a waveguide mode expander includes providing a substrate including a waveguide, bonding a chiplet including multiple optical material layers in a mounting region adjacent an output end of the waveguide, and selectively removing portions of the chiplet to form tapered stages that successively increase in number and lateral size from a proximal end to a distal end of the chiplet. The first optical material layer supports an input mode substantially the same size as a mode exiting the waveguide. One or more of the overlying layers, when combined with the first layer, support a larger, output optical mode size. Each tapered stage of the mode expander is formed of a portion of a respective layer of the chiplet. The first layer and the tapered stages form a waveguide mode expander that expands an optical mode of light traversing the chiplet.
    Type: Grant
    Filed: May 1, 2018
    Date of Patent: January 19, 2021
    Assignee: Skorpios Technologies, Inc.
    Inventors: Damien Lambert, Guoliang Li, John Zyskind, Stephen B. Krasulick
  • Publication number: 20200400891
    Abstract: A device is provided for optical mode spot size conversion to optically couple a semiconductor waveguide with an optical fiber. The device includes a waveguide comprising a waveguide taper region, which comprises a shoulder portion and a ridge portion above the shoulder portion. The ridge portion has a width that tapers to meet a width of the shoulder portion. The waveguide taper region comprises a first material. The device also has a mode converter coupled to the waveguide. The mode converter includes a plurality of stages, and each of the plurality of stages tapers in a direction similar to a direction of taper of the waveguide taper region. The mode converter is made of a second material different from the first material.
    Type: Application
    Filed: April 3, 2020
    Publication date: December 24, 2020
    Inventors: Majid Sodagar, Stephen B. Krasulick, John Zyskind, Paveen Apiratikul, Luca Cafiero
  • Patent number: 10833480
    Abstract: A method of fabricating a gain medium includes growing a p-type layer doped with zinc on a substrate, growing an undoped layer including one or both of InP or InGaAsP on the p-type layer, growing a region that includes multiple quantum wells (MQWs) on the undoped layer, and growing an n-type layer on the region. The undoped layer has a thickness that is sufficient to prevent Zn diffusion from the p-type layer into the region during subsequent growth or wafer fabrication steps.
    Type: Grant
    Filed: July 3, 2019
    Date of Patent: November 10, 2020
    Assignee: Skorpios Technologies, Inc.
    Inventors: John Y. Spann, John Zyskind
  • Publication number: 20200169063
    Abstract: A method of fabricating a gain medium includes growing a p-type layer doped with zinc on a substrate, growing an undoped layer including one or both of InP or InGaAsP on the p-type layer, growing a region that includes multiple quantum wells (MQWs) on the undoped layer, and growing an n-type layer on the region. The undoped layer has a thickness that is sufficient to prevent Zn diffusion from the p-type layer into the region during subsequent growth or wafer fabrication steps.
    Type: Application
    Filed: July 3, 2019
    Publication date: May 28, 2020
    Inventors: John Y. Spann, John Zyskind
  • Patent number: 10649148
    Abstract: A device is provided for optical mode spot size conversion to optically couple a semiconductor waveguide with an optical fiber. The device includes a waveguide comprising a waveguide taper region, which comprises a shoulder portion and a ridge portion above the shoulder portion. The ridge portion has a width that tapers to meet a width of the shoulder portion. The waveguide taper region comprises a first material. The device also has a mode converter coupled to the waveguide. The mode converter includes a plurality of stages, and each of the plurality of stages tapers in a direction similar to a direction of taper of the waveguide taper region. The mode converter is made of a second material different from the first material.
    Type: Grant
    Filed: October 25, 2018
    Date of Patent: May 12, 2020
    Assignee: Skorpios Technologies, Inc.
    Inventors: Majid Sodagar, Stephen B. Krasulick, John Zyskind, Paveen Apiratikul, Luca Cafiero
  • Publication number: 20190170953
    Abstract: A v-groove assembly is used to edge couple a lensed fiber (e.g., an optical fiber made of silica) with a waveguide in a photonic chip. The v-groove assembly is made from fused silica. Fused silica is used to so that an adhesive (e.g., epoxy resin) used in bonding the lensed fiber to the v-groove assembly and/or bonding the v-groove assembly to the photonic chip can be cured, at least partially, by light.
    Type: Application
    Filed: September 24, 2018
    Publication date: June 6, 2019
    Inventors: Daming Liu, John Zyskind
  • Publication number: 20190170944
    Abstract: A device is provided for optical mode spot size conversion to optically couple a semiconductor waveguide with an optical fiber. The device includes a waveguide comprising a waveguide taper region, which comprises a shoulder portion and a ridge portion above the shoulder portion. The ridge portion has a width that tapers to meet a width of the shoulder portion. The waveguide taper region comprises a first material. The device also has a mode converter coupled to the waveguide. The mode converter includes a plurality of stages, and each of the plurality of stages tapers in a direction similar to a direction of taper of the waveguide taper region. The mode converter is made of a second material different from the first material.
    Type: Application
    Filed: October 25, 2018
    Publication date: June 6, 2019
    Inventors: Majid Sodagar, Stephen B. Krasulick, John Zyskind, Paveen Apiratikul, Luca Cafiero
  • Publication number: 20190113680
    Abstract: A device for optical communication is described. The device comprises two transceivers integrated on one chip. A first transceiver can be used with existing optical-communication architecture. As a more advanced optical-communication architecture becomes adopted, the device can be switched from using the first transceiver to using a second transceiver to communicate using the more advanced optical-communication architecture.
    Type: Application
    Filed: October 15, 2018
    Publication date: April 18, 2019
    Applicant: Skorpios Technologies, Inc.
    Inventors: Majid Sodagar, Stephen B. Krasulick, John Zyskind, Paveen Apiratikul, Luca Cafiero
  • Publication number: 20180348432
    Abstract: A method of fabricating a waveguide mode expander includes providing a substrate including a waveguide, bonding a chiplet including multiple optical material layers in a mounting region adjacent an output end of the waveguide, and selectively removing portions of the chiplet to form tapered stages that successively increase in number and lateral size from a proximal end to a distal end of the chiplet. The first optical material layer supports an input mode substantially the same size as a mode exiting the waveguide. One or more of the overlying layers, when combined with the first layer, support a larger, output optical mode size. Each tapered stage of the mode expander is formed of a portion of a respective layer of the chiplet. The first layer and the tapered stages form a waveguide mode expander that expands an optical mode of light traversing the chiplet.
    Type: Application
    Filed: May 1, 2018
    Publication date: December 6, 2018
    Inventors: Damien Lambert, Guoliang Li, John Zyskind, Stephen B. Krasulick
  • Patent number: 10107976
    Abstract: A v-groove assembly is used to edge couple a lensed fiber (e.g., an optical fiber made of silica) with a waveguide in a photonic chip. The v-groove assembly is made from fused silica. Fused silica is used to so that an adhesive (e.g., epoxy resin) used in bonding the lensed fiber to the v-groove assembly and/or bonding the v-groove assembly to the photonic chip can be cured, at least partially, by light.
    Type: Grant
    Filed: April 22, 2016
    Date of Patent: October 23, 2018
    Assignee: Skorpios Technologies, Inc.
    Inventors: Daming Liu, John Zyskind
  • Patent number: 9977188
    Abstract: A method of fabricating a waveguide mode expander includes providing a substrate including a waveguide, bonding a chiplet including multiple optical material layers in a mounting region adjacent an output end of the waveguide, and selectively removing portions of the chiplet to form tapered stages that successively increase in number and lateral size from a proximal end to a distal end of the chiplet. The first optical material layer supports an input mode substantially the same size as a mode exiting the waveguide. One or more of the overlying layers, when combined with the first layer, support a larger, output optical mode size. Each tapered stage of the mode expander is formed of a portion of a respective layer of the chiplet. The first layer and the tapered stages form a waveguide mode expander that expands an optical mode of light traversing the chiplet.
    Type: Grant
    Filed: February 23, 2016
    Date of Patent: May 22, 2018
    Assignee: Skorpios Technologies, Inc.
    Inventors: Damien Lambert, Guoliang Li, John Zyskind, Stephen B. Krasulick
  • Patent number: 9885832
    Abstract: A waveguide mode expander couples a smaller optical mode in a semiconductor waveguide to a larger optical mode in an optical fiber. The waveguide mode expander comprises a shoulder made of crystalline silicon and a ridge made of non-crystalline silicon (e.g., amorphous silicon). In some embodiments, the ridge of the waveguide mode expander has a plurality of stages, the plurality of stages have different widths and/or thicknesses at a given cross section.
    Type: Grant
    Filed: May 27, 2015
    Date of Patent: February 6, 2018
    Assignee: Skorpios Technologies, Inc.
    Inventors: Damien Lambert, Nikhil Kumar, Elton Marchena, Daming Liu, Guoliang Li, John Zyskind
  • Publication number: 20160341919
    Abstract: A v-groove assembly is used to edge couple a lensed fiber (e.g., an optical fiber made of silica) with a waveguide in a photonic chip. The v-groove assembly is made from fused silica. Fused silica is used to so that an adhesive (e.g., epoxy resin) used in bonding the lensed fiber to the v-groove assembly and/or bonding the v-groove assembly to the photonic chip can be cured, at least partially, by light.
    Type: Application
    Filed: April 22, 2016
    Publication date: November 24, 2016
    Applicant: Skorpios Technologies, Inc.
    Inventors: Daming Liu, John Zyskind
  • Patent number: 9461770
    Abstract: A multi-channel transceiver using a floating frequency grid for multi-channel, optical communication is presented. Transmitter frequencies are permitted to drift, and a receiver is tuned to compensate for drifts in the transmitter frequencies.
    Type: Grant
    Filed: September 12, 2014
    Date of Patent: October 4, 2016
    Assignee: Skorpios Technologies, Inc.
    Inventors: Robert J. Stone, John Zyskind