Patents by Inventor Johnny T. Ngo

Johnny T. Ngo has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9604175
    Abstract: The present disclosure describes zoned three way catalyst (TWC) systems including Rhodium-iron overcoat layers and Nb—Zr—Al Oxide overcoat layers. Disclosed herein are TWC sample systems that are configured to include a substrate and one or more of a washcoat layer, an impregnation layer, and/or an overcoat layer. In catalyst systems disclosed herein, closed-coupled catalysts include a first catalyst zone with an overcoat layer formed using a slurry that includes an oxide mixture and an Oxygen Storage Material (OSM). In catalyst systems disclosed herein, oxide mixtures include niobium oxide (Nb2O5), zirconia, and alumina. Further, catalyst systems disclosed herein include a second catalyst zone with an overcoat layer formed to include a rhodium-iron catalyst. Yet further, catalyst systems disclosed herein include impregnation layers that include one or more of Palladium, Barium, Cerium, Neodymium, and Rhodium.
    Type: Grant
    Filed: June 5, 2015
    Date of Patent: March 28, 2017
    Assignee: Clean Diesel Technologies, Inc.
    Inventors: Randal L. Hatfield, Zahra Nazarpoor, Johnny T. Ngo, Edward J. Lee, Stephen J. Golden
  • Patent number: 9579604
    Abstract: Close-coupled catalysts (CCC) for TWC applications are disclosed. The novel CCCs are implemented using light-weighted ceramic substrates in which a thin coating employing a low loading of Iron (Fe)-activated Rhodium (Rh) material composition, with Iron loadings and an OSM of Ceria-Zirconia, are deposited onto the substrates. Different CCC samples are produced to determine and/or verify improved light-off (LO) and NOX conversion of the CCCs. Other CCC samples produced are a CCC including a standard (non-activated) Rh thin coating and a heavily loaded CCC with a single coating of Pd/Rh material composition. The CCC samples are aged under dyno-aging using the multi-mode aging cycle and their performance tested using a car engine with ports on the exhaust to measure the emissions, according to the testing protocol in the Environmental Protection Agency Federal Test Procedure 75. During testing, the thin coatings of Fe-activated Rh exhibit improved light-off and NOx conversion efficiency.
    Type: Grant
    Filed: June 5, 2015
    Date of Patent: February 28, 2017
    Assignee: Clean Diesel Technologies, Inc.
    Inventors: Randal L. Hatfield, Stephen J. Golden, Johnny T. Ngo
  • Patent number: 9545626
    Abstract: The present disclosure refers to a plurality of process employed for optimization of Zero-PGM washcoat and overcoat loadings on metallic substrates. According to an embodiment a substantial increase in conversion of HC and CO may be achieved by optimizing the total washcoat and overcoat loadings of the catalyst. According to another embodiment, the present disclosure may provide solutions to determine the optimum total washcoat and overcoat loadings for minimizing washcoat adhesion loss. As a result, may increase the conversion of HC and CO from discharge of exhaust gases from internal combustion engines, optimizing performance of Zero-PGM catalyst systems.
    Type: Grant
    Filed: July 12, 2013
    Date of Patent: January 17, 2017
    Assignee: Clean Diesel Technologies, Inc.
    Inventors: Zahra Nazarpoor, Sen Kitazumi, Johnny T. Ngo
  • Patent number: 9517449
    Abstract: Solutions to the problem of washcoat and/or overcoat adhesion loss of ZPGM catalyst on metallic substrates are disclosed. Present disclosure provides a novel process for improving WCA to metallic substrates of ZPGM catalyst systems. Reduction of WCA loss and improved catalyst activity may be enabled by the selection of processing parameters determined from variations of pH and addition of binder to overcoat slurry, and particle size of washcoat. Processing parameters may be applied to a plurality of metallic substrates of different geometries and cell densities.
    Type: Grant
    Filed: June 26, 2013
    Date of Patent: December 13, 2016
    Assignee: Clean Diesel Technologies, Inc.
    Inventors: Zahra Nazarpoor, Sen Kitazumi, Johnny T. Ngo
  • Publication number: 20160354765
    Abstract: The present disclosure describes support oxides, including include Niobium Oxide, which are employed in three-way catalytic (TWC) systems. Disclosed herein are TWC sample systems that are configured to include a substrate and one or more of a washcoat layer, an impregnation layer, and/or an overcoat layer. The disclosed one or more of washcoat layer and/or overcoat layer are formed using a slurry that includes an oxide mixture and an Oxygen Storage Material. The disclosed oxide mixtures include niobium oxide (Nb2O5), zirconia, and alumina. Further, other disclosed oxide mixtures additionally include NiO.
    Type: Application
    Filed: June 5, 2015
    Publication date: December 8, 2016
    Inventors: Randal L. Hatfield, Zahra Nazarpoor, Johnny T. Ngo, Stephen J. Golden
  • Patent number: 9475004
    Abstract: The present disclosure describes rhodium iron catalysts of use in catalyst systems. Disclosed here are TWCs configured to include a substrate and one or more of a washcoat layer, an impregnation layer, and/or an overcoat layer. Disclosed herein are one or more of a washcoat layer and/or an overcoat layer formed using a slurry that includes one or more of an oxygen storage material, a refractory support oxide, iron, and rhodium. Disclosed herein are methods of preparing catalysts wherein a washcoat layer is deposited onto the substrate, one or more impregnation layers may be deposited onto the washcoat layer, one or more overcoat layers may be deposited onto the impregnation washcoat layer, and one or more additional impregnation layers may be deposited onto the one or more washcoat layers.
    Type: Grant
    Filed: June 5, 2015
    Date of Patent: October 25, 2016
    Assignee: Clean Diesel Technologies, inc.
    Inventors: Randal L. Hatfield, Stephen J. Golden, Johnny T. Ngo
  • Patent number: 9475005
    Abstract: Three way catalysts (TWCs) for catalyst systems are disclosed. The disclosed TWC systems include Iron (Fe)-activated Rhodium (Rh) and Barium (Ba)-Palladium (Pd) layers capable of interacting with conventional and/or non-conventional catalyst supports and additives. Variations of TWC system samples are produced including Fe-activated Rh layers deposited onto a washcoat (WC) layer having one or more of an oxygen storage material (OSM). Other TWC system samples are produced including an impregnation (IMPG) layer having loading variations of Ba within a Pd, Ce, and Nd applied onto an OSM WC layer, and a further overcoat layer including Fe-activated Rh is applied onto the IMPG layer. The catalytic performance of disclosed TWC catalysts is evaluated by performing a series of light-off tests, wide pulse perturbation tests, and standard isothermal oxygen storage capacity oscillating tests. Disclosed TWC catalysts exhibit high catalytic performance and significant oxygen storage capacity.
    Type: Grant
    Filed: June 5, 2015
    Date of Patent: October 25, 2016
    Assignee: Clean Diesel Technologies, Inc.
    Inventors: Randal L. Hatfield, Edward J. Lee, Johnny T. Ngo, Stephen J. Golden
  • Publication number: 20160279611
    Abstract: The invention generally relates to three-way catalysts and catalyst formulations capable of simultaneously converting nitrogen oxides, carbon monoxide, and hydrocarbons into less toxic compounds. Such three-way catalyst formulations contain ZrO2-based mixed-metal oxide support oxides doped with an amount of lanthanide. Three-way catalyst formulations with the support oxides of the present invention demonstrate higher catalytic activity, efficiency and longevity than comparable catalysts formulated with traditional support oxides.
    Type: Application
    Filed: March 26, 2015
    Publication date: September 29, 2016
    Applicant: CLEAN DIESEL TECHNOLOGIES, INC.
    Inventors: Stephen J. Golden, Randal Hatfield, Jason D. Pless, Johnny T. Ngo
  • Publication number: 20150352532
    Abstract: Three way catalysts (TWCs) for catalyst systems are disclosed. The disclosed TWC systems include Iron (Fe)-activated Rhodium (Rh) and Barium (Ba)-Palladium (Pd) layers capable of interacting with conventional and/or non-conventional catalyst supports and additives. Variations of TWC system samples are produced including Fe-activated Rh layers deposited onto a washcoat (WC) layer having one or more of an oxygen storage material (OSM). Other TWC system samples are produced including an impregnation (IMPG) layer having loading variations of Ba within a Pd, Ce, and Nd applied onto an OSM WC layer, and a further overcoat layer including Fe-activated Rh is applied onto the IMPG layer. The catalytic performance of disclosed TWC catalysts is evaluated by performing a series of light-off tests, wide pulse perturbation tests, and standard isothermal oxygen storage capacity oscillating tests. Disclosed TWC catalysts exhibit high catalytic performance and significant oxygen storage capacity.
    Type: Application
    Filed: June 5, 2015
    Publication date: December 10, 2015
    Inventors: Randal L. Hatfield, Edward J. Lee, Johnny T. Ngo, Stephen J. Golden
  • Publication number: 20150352531
    Abstract: The present disclosure describes rhodium iron catalysts of use in catalyst systems. Disclosed here are TWCs configured to include a substrate and one or more of a washcoat layer, an impregnation layer, and/or an overcoat layer. Disclosed herein are one or more of a washcoat layer and/or an overcoat layer formed using a slurry that includes one or more of an oxygen storage material, a refractory support oxide, iron, and rhodium. Disclosed herein are methods of preparing catalysts wherein a washcoat layer is deposited onto the substrate, one or more impregnation layers may be deposited onto the washcoat layer, one or more overcoat layers may be deposited onto the impregnation washcoat layer, and one or more additional impregnation layers may be deposited onto the one or more washcoat layers.
    Type: Application
    Filed: June 5, 2015
    Publication date: December 10, 2015
    Inventors: Randal L. Hatfield, Stephen J. Golden, Johnny T. Ngo
  • Publication number: 20150352533
    Abstract: Close-coupled catalysts (CCC) for TWC applications are disclosed. The novel CCCs are implemented using light-weighted ceramic substrates in which a thin coating employing a low loading of Iron (Fe)-activated Rhodium (Rh) material composition, with Iron loadings and an OSM of Ceria-Zirconia, are deposited onto the substrates. Different CCC samples are produced to determine and/or verify improved light-off (LO) and NOX conversion of the CCCs. Other CCC samples produced are a CCC including a standard (non-activated) Rh thin coating and a heavily loaded CCC with a single coating of Pd/Rh material composition. The CCC samples are aged under dyno-aging using the multi-mode aging cycle and their performance tested using a car engine with ports on the exhaust to measure the emissions, according to the testing protocol in the Environmental Protection Agency Federal Test Procedure 75. During testing, the thin coatings of Fe-activated Rh exhibit improved light-off and NOx conversion efficiency.
    Type: Application
    Filed: June 5, 2015
    Publication date: December 10, 2015
    Inventors: Randal L. Hatfield, Stephen J. Golden, Johnny T. Ngo
  • Publication number: 20150352494
    Abstract: The present disclosure describes zoned three way catalyst (TWC) systems including Rhodium-iron overcoat layers and Nb—Zr—Al Oxide overcoat layers. Disclosed herein are TWC sample systems that are configured to include a substrate and one or more of a washcoat layer, an impregnation layer, and/or an overcoat layer. In catalyst systems disclosed herein, closed-coupled catalysts include a first catalyst zone with an overcoat layer formed using a slurry that includes an oxide mixture and an Oxygen Storage Material (OSM). In catalyst systems disclosed herein, oxide mixtures include niobium oxide (Nb2O5), zirconia, and alumina. Further, catalyst systems disclosed herein include a second catalyst zone with an overcoat layer formed to include a rhodium-iron catalyst. Yet further, catalyst systems disclosed herein include impregnation layers that include one or more of Palladium, Barium, Cerium, Neodymium, and Rhodium.
    Type: Application
    Filed: June 5, 2015
    Publication date: December 10, 2015
    Inventors: Randal L. Hatfield, Zahra Nazarpoor, Johnny T. Ngo, Edward J. Lee, Stephen J. Golden
  • Publication number: 20150196902
    Abstract: Disclosed are three-way catalysts that are able to simultaneously convert nitrogen oxides, carbon monoxide, and hydrocarbons in exhaust gas emissions into less toxic compounds. Also disclosed are three-way catalyst formulations comprising palladium (Pd)-containing oxygen storage materials. In some embodiments, the three-way catalyst formulations of the invention do not contain rhodium. Further disclosed are improved methods for making Pd-containing oxygen storage materials. The relates to methods of making and using three-way catalyst formulations of the invention.
    Type: Application
    Filed: March 26, 2015
    Publication date: July 16, 2015
    Applicant: CLEAN DIESEL TECHNOLOGIES, INC.
    Inventors: Stephen J. Golden, Randal Hatfield, Jason D. Pless, Johnny T. Ngo
  • Patent number: 9012353
    Abstract: Disclosed are three-way catalysts that are able to simultaneously convert nitrogen oxides, carbon monoxide, and hydrocarbons in exhaust gas emissions into less toxic compounds. Also disclosed are three-way catalyst formulations comprising palladium (Pd)-containing oxygen storage materials. In some embodiments, the three-way catalyst formulations of the invention do not contain rhodium. Further disclosed are improved methods for making Pd-containing oxygen storage materials. The relates to methods of making and using three-way catalyst formulations of the invention.
    Type: Grant
    Filed: August 8, 2012
    Date of Patent: April 21, 2015
    Assignee: Clean Diesel Technologies, Inc.
    Inventors: Stephen J. Golden, Randal Hatfield, Jason D. Pless, Johnny T. Ngo
  • Publication number: 20150018204
    Abstract: Solutions to the problem of washcoat and/or overcoat adhesion loss of ZPGM catalyst on metallic substrates are disclosed. Present disclosure provides an enhanced process for improving WCA to metallic substrates of ZPGM catalyst systems. Reduction of WCA loss and improved catalyst activity may be enabled by the selection of processing parameters determined from variation of rheological properties by the solid content of the overcoat slurry and variation of the overcoat slurry particle size distribution to produce desirable homogeneity, specific loading, and adherence of the coating on metallic substrates. Processing parameters may be applied to a plurality of metallic substrates of different geometries and cell densities.
    Type: Application
    Filed: July 12, 2013
    Publication date: January 15, 2015
    Applicant: CDTI
    Inventors: Zahra Nazarpoor, Sen Kitazumi, Johnny T. Ngo
  • Publication number: 20150018202
    Abstract: The present disclosure refers to processes and formulations employed for optimization of variations of Zero-PGM catalyst coated on metallic substrates. Deposition of a uniform and well-adhered layer of catalyst on the metallic substrate may be enabled by the selection of a washcoat loading resulting from variation of metal loadings. Characterization of catalysts may be performed using a plurality of catalytic tests, including but not limited to washcoating adherence test, back pressure test, inspection of textural characteristics, and catalyst activity. Optimized variations may be applied to a plurality of metallic substrates for achieving coating uniformity, desired level of WCA loss, and optimized performance of catalyst activity.
    Type: Application
    Filed: July 12, 2013
    Publication date: January 15, 2015
    Applicant: CDTI
    Inventors: Zahra Nazarpoor, Sen Kitazumi, Johnny T. Ngo
  • Publication number: 20150018203
    Abstract: The present disclosure refers to a plurality of process employed for optimization of Zero-PGM washcoat and overcoat loadings on metallic substrates. According to an embodiment a substantial increase in conversion of HC and CO may be achieved by optimizing the total washcoat and overcoat loadings of the catalyst. According to another embodiment, the present disclosure may provide solutions to determine the optimum total washcoat and overcoat loadings for minimizing washcoat adhesion loss. As a result, may increase the conversion of HC and CO from discharge of exhaust gases from internal combustion engines, optimizing performance of Zero-PGM catalyst systems.
    Type: Application
    Filed: July 12, 2013
    Publication date: January 15, 2015
    Applicant: CDTi
    Inventors: Zahra Nazarpoor, Sen Kitazumi, Johnny T. Ngo
  • Publication number: 20150005158
    Abstract: Solutions to the problem of washcoat and/or overcoat adhesion loss of ZPGM catalyst on metallic substrates are disclosed. Present disclosure provides a novel process for improving WCA to metallic substrates of ZPGM catalyst systems. Reduction of WCA loss and improved catalyst activity may be enabled by the selection of processing parameters determined from variations of pH and addition of binder to overcoat slurry, and particle size of washcoat. Processing parameters may be applied to a plurality of metallic substrates of different geometries and cell densities.
    Type: Application
    Filed: June 26, 2013
    Publication date: January 1, 2015
    Applicant: CDTI
    Inventors: Zahra Nazarpoor, Sen Kitazumi, Johnny T. Ngo
  • Publication number: 20150005157
    Abstract: Present disclosure provides a novel process for optimization of Zero-PGM catalyst systems using metallic substrate. Deposition of a homogeneous and well-adhered layer of catalyst on the metallic substrate may be enabled by the selection of a washcoat loading resulting from variation of metal loadings. Characterization of catalysts may be performed using a plurality of catalytic tests, including but not limited to washcoating adherence test, back pressure test, inspection of textural characteristics, and catalyst activity. Optimization may be applied to a plurality of metallic substrates of different geometries and cell densities.
    Type: Application
    Filed: June 26, 2013
    Publication date: January 1, 2015
    Applicant: CDTi
    Inventors: Zahra Nazarpoor, Sen Kitazumi, Johnny T. Ngo
  • Publication number: 20150005159
    Abstract: The present disclosure refers to a plurality of process employed for optimization of Zero-PGM metal loading in Washcoat and Overcoat on metallic substrates. According to an embodiment a substantial increase in conversion of HC and CO may be achieved by optimizing the metal loading of the catalyst. According to another embodiment, the present disclosure may provide solutions to determine the optimum metal loading in washcoat for minimizing washcoat adhesion loss. As a result, may increase the conversion of HC and CO from discharge of exhaust gases from internal combustion engines, optimizing performance of Zero-PGM catalyst systems.
    Type: Application
    Filed: June 26, 2013
    Publication date: January 1, 2015
    Applicant: CDTi
    Inventors: Zahra Nazarpoor, Sen Kitazumi, Johnny T. Ngo