Patents by Inventor Joji Fujiwara

Joji Fujiwara has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11923829
    Abstract: An electronic filter includes a plurality of series arm acoustic wave resonators electrically connected in series between an input port and an output port, a plurality of parallel arm acoustic wave resonators electrically connected in parallel and electrically connected on first sides between respective ones of the plurality of series arm acoustic wave resonators and electrically connected on second sides to ground, and at least one additional acoustic wave resonator electrically connected in parallel to one of one of the plurality of series arm acoustic wave resonators or one of the plurality of parallel arm acoustic wave resonators and having a temperature coefficient of frequency (TCF) lower than a TCF of the acoustic wave resonator to which it is electrically connected in parallel.
    Type: Grant
    Filed: April 6, 2021
    Date of Patent: March 5, 2024
    Assignee: SKYWORKS SOLUTIONS, INC.
    Inventors: Tomoya Komatsu, Joji Fujiwara
  • Publication number: 20240056049
    Abstract: An electronic device comprises one or more heat generating circuit elements and a no-contact via thermally coupled to the one or more heat generating circuit elements to increase dissipation of heat from the electronic device.
    Type: Application
    Filed: August 2, 2023
    Publication date: February 15, 2024
    Inventors: Kazuki Yamamura, Joji Fujiwara
  • Patent number: 11677380
    Abstract: An acoustic wave device comprises a substrate including a piezoelectric material, and interdigital transducer (IDT) electrodes disposed on a surface of the substrate. The IDT electrodes have gap regions, edge regions, and center regions. A maximum width of the IDT electrodes in the gap regions is greater than the maximum width of the IDT electrodes in the edge regions, thereby achieving a velocity of an acoustic wave in the gap regions being greater than the velocity of the acoustic wave in the center regions, and the velocity of the acoustic wave in the center regions being greater than the velocity of the acoustic wave in the edge regions.
    Type: Grant
    Filed: August 25, 2020
    Date of Patent: June 13, 2023
    Assignee: SKYWORKS SOLUTIONS, INC.
    Inventors: Joji Fujiwara, Riho Sasaki
  • Patent number: 11652466
    Abstract: An acoustic wave device comprises a substrate including a piezoelectric material, interdigital transducer (IDT) electrodes disposed on a surface of the substrate, the IDT electrodes having gap regions, edge regions, and center regions, a first dielectric film having a lower surface disposed on the IDT electrodes and the surface of the substrate, and a material having a density greater than a density of the first dielectric film disposed above the gap regions of the IDT electrodes.
    Type: Grant
    Filed: August 21, 2020
    Date of Patent: May 16, 2023
    Assignee: SKYWORKS SOLUTIONS, INC.
    Inventor: Joji Fujiwara
  • Publication number: 20230094376
    Abstract: An acoustic wave device is disclosed. The acoustic waved device can be a shear horizontal mode surface acoustic wave device. The acoustic wave device can include a piezoelectric layer, an interdigital transducer electrode over the piezoelectric layer, and a temperature compensation layer over the interdigital transducer electrode. The piezoelectric layer can be a lithium niobate layer with a cut angle in a range of ?20° YX to 25° YX. The interdigital transducer electrode including a first layer and a second layer. The first layer affects acoustic properties of the acoustic wave device and the second layer affects electrical properties of the acoustic wave device. The second layer is positioned between the piezoelectric layer and the first layer such that a frequency response of the acoustic wave device includes a Rayleigh mode response at a frequency higher than a shear horizontal mode response.
    Type: Application
    Filed: September 28, 2022
    Publication date: March 30, 2023
    Inventors: Joji Fujiwara, Riho Sasaki, Kyohei Kobayashi, Noriaki Amo, Yosuke Hamaoka
  • Publication number: 20230101360
    Abstract: An acoustic wave device is disclosed. The acoustic waved device can be a shear horizontal mode surface acoustic wave device. The acoustic wave device can include a piezoelectric layer, an interdigital transducer electrode over the piezoelectric layer, and a temperature compensation layer over the interdigital transducer electrode. The piezoelectric layer can be a lithium niobate layer with a cut angle in a range of ?20° YX to 25° YX. The interdigital transducer electrode includes a first layer having a first thickness and a second layer having a second thickness. The first layer affects acoustic properties of the acoustic wave device and the second layer affects electrical properties of the acoustic wave device. The first layer is positioned between the piezoelectric layer and the second layer. The first thickness is configured such that a frequency response of the acoustic wave device includes a Rayleigh mode response at a frequency higher than a shear horizontal mode response resonance.
    Type: Application
    Filed: September 28, 2022
    Publication date: March 30, 2023
    Inventors: Joji Fujiwara, Riho Sasaki, Kyohei Kobayashi, Noriaki Amo, Yosuke Hamaoka
  • Publication number: 20230043197
    Abstract: A low velocity surface acoustic wave device, and a method of reducing the velocity of a surface acoustic wave generated by a surface acoustic wave device are described, the device including a piezoelectric layer, an interdigital transducer disposed on the piezoelectric substrate and configured to generate a surface acoustic wave in response to an electrical, and a temperature coefficient of frequency compensation layer disposed partially on the interdigital transducer and partially on the piezoelectric substrate, the temperature coefficient of frequency compensation layer having a low velocity layer disposed within it configured to reduce the velocity of a surface acoustic wave generated by the interdigital transducer, the method including disposing a wave velocity adjustment layer, the wave velocity adjustment layer being a low velocity layer, within a temperature compensation layer of the surface acoustic wave device.
    Type: Application
    Filed: August 2, 2022
    Publication date: February 9, 2023
    Inventors: Joji Fujiwara, Riho Sasaki, Kyohei Kobayashi, Noriaki Amo
  • Publication number: 20220345103
    Abstract: A switching module assembly is provided. The switching module assembly includes a plurality of transmit/receive terminals, an antenna terminal, a shunt indictor coupled to the antenna terminal, a plurality of duplexers coupled to the plurality of transmit/receive terminals, and a plurality of impedance rotation elements coupled to the plurality of duplexers. Each duplexer corresponds to a signal frequency of a plurality of signal frequencies, and the impedance rotation elements are configured to adjust the impedance of each duplexer in conjunction with the shunt inductor to provide a resonant frequency at the signal frequency of each duplexer. The switching module can be used in the front-end module of a communications device, such as a mobile phone.
    Type: Application
    Filed: April 15, 2022
    Publication date: October 27, 2022
    Inventors: Jiunn-Sheng Guo, Joji Fujiwara, Nobuyuki Tsujimoto
  • Patent number: 11444599
    Abstract: An acoustic wave device comprises a substrate including a piezoelectric material, interdigital transducer (IDT) electrodes disposed on an upper surface of the substrate. The IDT electrodes having gap regions, edge regions, and center regions. A duty factor of the IDT electrodes in the edge regions is greater than the duty factor of the IDT electrodes in the center regions. A first dielectric film is disposed above the IDT electrodes and an upper surface of the substrate. The first dielectric film has a greater thickness in portions of the center regions than in portions proximate the gap regions.
    Type: Grant
    Filed: August 25, 2020
    Date of Patent: September 13, 2022
    Assignee: SKYWORKS SOLUTIONS, INC.
    Inventors: Riho Sasaki, Joji Fujiwara
  • Publication number: 20210226610
    Abstract: An electronic filter includes a plurality of series arm acoustic wave resonators electrically connected in series between an input port and an output port, a plurality of parallel arm acoustic wave resonators electrically connected in parallel and electrically connected on first sides between respective ones of the plurality of series arm acoustic wave resonators and electrically connected on second sides to ground, and at least one additional acoustic wave resonator electrically connected in parallel to one of one of the plurality of series arm acoustic wave resonators or one of the plurality of parallel arm acoustic wave resonators and having a temperature coefficient of frequency (TCF) lower than a TCF of the acoustic wave resonator to which it is electrically connected in parallel.
    Type: Application
    Filed: April 6, 2021
    Publication date: July 22, 2021
    Inventors: Tomoya Komatsu, Joji Fujiwara
  • Patent number: 10979028
    Abstract: An electronic filter includes a plurality of series arm acoustic wave resonators electrically connected in series between an input port and an output port, a plurality of parallel arm acoustic wave resonators electrically connected in parallel and electrically connected on first sides between respective ones of the plurality of series arm acoustic wave resonators and electrically connected on second sides to ground, and at least one additional acoustic wave resonator electrically connected in parallel to one of one of the plurality of series arm acoustic wave resonators or one of the plurality of parallel arm acoustic wave resonators and having a temperature coefficient of frequency (TCF) lower than a TCF of the acoustic wave resonator to which it is electrically connected in parallel.
    Type: Grant
    Filed: April 24, 2019
    Date of Patent: April 13, 2021
    Assignee: SKYWORKS SOLUTIONS, INC.
    Inventors: Tomoya Komatsu, Joji Fujiwara
  • Publication number: 20210067134
    Abstract: An acoustic wave device comprises a substrate including a piezoelectric material, interdigital transducer (IDT) electrodes disposed on a surface of the substrate, the IDT electrodes having gap regions, edge regions, and center regions, a first dielectric film having a lower surface disposed on the IDT electrodes and the surface of the substrate, and a material having a density greater than a density of the first dielectric film disposed above the gap regions of the IDT electrodes.
    Type: Application
    Filed: August 21, 2020
    Publication date: March 4, 2021
    Inventor: Joji Fujiwara
  • Publication number: 20210067136
    Abstract: An acoustic wave device comprises a substrate including a piezoelectric material, and interdigital transducer (IDT) electrodes disposed on a surface of the substrate. The IDT electrodes have gap regions, edge regions, and center regions. A maximum width of the IDT electrodes in the gap regions is greater than the maximum width of the IDT electrodes in the edge regions, thereby achieving a velocity of an acoustic wave in the gap regions being greater than the velocity of the acoustic wave in the center regions, and the velocity of the acoustic wave in the center regions being greater than the velocity of the acoustic wave in the edge regions.
    Type: Application
    Filed: August 25, 2020
    Publication date: March 4, 2021
    Inventors: Joji Fujiwara, Riho Sasaki
  • Publication number: 20210067127
    Abstract: An acoustic wave device comprises a substrate including a piezoelectric material, interdigital transducer (IDT) electrodes disposed on an upper surface of the substrate. The IDT electrodes having gap regions, edge regions, and center regions. A duty factor of the IDT electrodes in the edge regions is greater than the duty factor of the IDT electrodes in the center regions. A first dielectric film is disposed above the IDT electrodes and an upper surface of the substrate. The first dielectric film has a greater thickness in portions of the center regions than in portions proximate the gap regions.
    Type: Application
    Filed: August 25, 2020
    Publication date: March 4, 2021
    Inventors: Riho Sasaki, Joji Fujiwara
  • Patent number: 10491194
    Abstract: A filter device including a first filter having a first passband, and a second filter having a second passband, the first and second filters each being connected between a common contact and a respective signal contact, and the filter device configured to reduce spurious emissions generated in one filter due to propagation of Lamb waves in the other filter. In one example the first filter includes a SAW filter formed on a piezoelectric substrate, a SAW resonator formed on the piezoelectric substrate and connected in series between the common contact and the SAW filter, and a dielectric film formed over the piezoelectric substrate covering the SAW filter and the SAW resonator. The dielectric film has a first thickness over the SAW filter and a second, lesser, thickness over the SAW resonator, a difference between the first and second thicknesses being selected to suppress spurious emissions in the second passband generated by propagation of a Lamb wave in the SAW filter.
    Type: Grant
    Filed: January 15, 2019
    Date of Patent: November 26, 2019
    Assignee: SKYWORKS FILTER SOLUTIONS JAPAN CO., LTD.
    Inventors: Tomoya Komatsu, Joji Fujiwara
  • Publication number: 20190341911
    Abstract: An electronic filter includes a plurality of series arm acoustic wave resonators electrically connected in series between an input port and an output port, a plurality of parallel arm acoustic wave resonators electrically connected in parallel and electrically connected on first sides between respective ones of the plurality of series arm acoustic wave resonators and electrically connected on second sides to ground, and at least one additional acoustic wave resonator electrically connected in parallel to one of one of the plurality of series arm acoustic wave resonators or one of the plurality of parallel arm acoustic wave resonators and having a temperature coefficient of frequency (TCF) lower than a TCF of the acoustic wave resonator to which it is electrically connected in parallel.
    Type: Application
    Filed: April 24, 2019
    Publication date: November 7, 2019
    Inventors: Tomoya Komatsu, Joji Fujiwara
  • Publication number: 20190149132
    Abstract: A filter device including a first filter having a first passband, and a second filter having a second passband, the first and second filters each being connected between a common contact and a respective signal contact, and the filter device configured to reduce spurious emissions generated in one filter due to propagation of Lamb waves in the other filter. In one example the first filter includes a SAW filter formed on a piezoelectric substrate, a SAW resonator formed on the piezoelectric substrate and connected in series between the common contact and the SAW filter, and a dielectric film formed over the piezoelectric substrate covering the SAW filter and the SAW resonator. The dielectric film has a first thickness over the SAW filter and a second, lesser, thickness over the SAW resonator, a difference between the first and second thicknesses being selected to suppress spurious emissions in the second passband generated by propagation of a Lamb wave in the SAW filter.
    Type: Application
    Filed: January 15, 2019
    Publication date: May 16, 2019
    Inventors: Tomoya Komatsu, Joji Fujiwara
  • Patent number: 10187039
    Abstract: A filter device that reduces spurious emissions generated in a frequency band 1.2 to 1.4 times greater than a center frequency of a passband of a filter. In one example the filter device includes a first filter connected between a common contact and a first signal contact and having a first passband, and a second filter connected between the common contact and a second signal contact and having a second passband with a center frequency in a range of 1.2 to 1.4 times greater than a center frequency of the first passband. The first filter includes a SAW filter formed on a piezoelectric substrate, a SAW resonator formed on the piezoelectric substrate and connected in series between the common contact and the SAW filter, and a dielectric film covering the SAW filter and SAW resonator, the dielectric film having a reduced thickness in a region corresponding to the SAW resonator.
    Type: Grant
    Filed: May 30, 2017
    Date of Patent: January 22, 2019
    Assignee: SKYWORKS FILTER SOLUTIONS JAPAN CO., LTD.
    Inventors: Tomoya Komatsu, Joji Fujiwara
  • Patent number: 10141643
    Abstract: A high-frequency filter includes a first output to output a first signal, a first filter, a second filter, and a first matching circuit connected to an output of the first filter and to an output of the second filter. The first signal is provided to the first output from one of the output of the first filter and the output of the second filter via the first matching circuit. The first matching circuit includes a resonator connected in series between the first output and the output of only one of the first filter and the second filter.
    Type: Grant
    Filed: October 5, 2015
    Date of Patent: November 27, 2018
    Assignee: SKYWORKS FILTER SOLUTIONS JAPAN CO., LTD.
    Inventors: Joji Fujiwara, Tetsuya Tsurunari, Tomoya Komatsu, Hiroyuki Nakamura
  • Patent number: 10135422
    Abstract: A filter device having improved attenuation and isolation characteristics. In one example the filter device has a common terminal, a first terminal, and a second terminal, and includes a first filter connected between the common terminal and the first terminal, a second filter connected between the common terminal and the second terminal, and an additional circuit including at least three IDT electrodes each connected to a respective one of a corresponding at least three connection points within the filter device, the at least three connection points being selected from a group consisting of the common terminal, the first terminal, the second terminal, a first node disposed between the plurality of first filter elements along a path extending between the common terminal and the first terminal, and a second node disposed between the plurality of second filter elements along a path extending between the common terminal and the second terminal.
    Type: Grant
    Filed: September 30, 2016
    Date of Patent: November 20, 2018
    Assignee: SKYWORKS FILTER SOLUTIONS JAPAN CO., LTD.
    Inventors: Rei Goto, Joji Fujiwara, Tetsuya Tsurunari, Hiroyuki Nakamura