Patents by Inventor Jon A. Patrick
Jon A. Patrick has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 7106086Abstract: A method of dynamically switching the voltage screen test parameters without falsely rejecting over stressing short channel length devices. Protection to more vulnerable devices is provided by determining the speed of the die prior to the voltage test screen, segregating the devices based on operational speed performance. A lower voltage is effectively applied during wafer probe test to the faster devices, which directly correspond to the population of short channel devices. Device speed is acquired by measuring the drain-to-source current of each FET, and dividing the resultant sum by the device gate channel width. The device with the higher values represent the faster devices. Alternatively, since faster devices draw more current, the supply current specification may be adjusted based on operational speed measurements.Type: GrantFiled: October 14, 2004Date of Patent: September 12, 2006Assignee: International Business Machines CorporationInventors: Roger W Fleury, Jon A Patrick
-
Patent number: 6927595Abstract: This invention teaches an apparatus and method for determining a more efficient quality assurance or reliability test screen without falsely rejecting, i.e., over stressing, short channel length devices during voltage stress test screening. Short channel lengths devices fabricated on a semiconductor wafer have a higher tendency to fail at voltage levels that would otherwise not harm long channel length devices. The failures, however, are not related to device defects. Protection to the more vulnerable devices is provided by determining the speed of the die prior to the voltage test screen, thus, segregating the devices based on operational speed performance. Next, a lower voltage is effectively applied during wafer probe test to the faster devices, which directly correspond to the population of short channel devices. A preferred measurement for device speed entails measuring the drain-to-source current of each FET, and dividing the resultant sum by the device gate channel width.Type: GrantFiled: November 1, 2004Date of Patent: August 9, 2005Assignee: International Business Machines CorporationInventors: Roger W. Fleury, Jon A. Patrick
-
Patent number: 6822471Abstract: This invention teaches an apparatus and method for determining a more efficient quality assurance or reliability test screen without falsely rejecting, i.e., over stressing, short channel length devices during voltage stress test screening. Short channel lengths devices fabricated on a semiconductor wafer have a higher tendency to fail at voltage levels that would otherwise not harm long channel length devices. The failures, however, are not related to device defects. Protection to the more vulnerable devices is provided by determining the speed of the die prior to the voltage test screen, thus, segregating the devices based on operational speed performance. Next, a lower voltage is effectively applied during wafer probe test to the faster devices, which directly correspond to the population of short channel devices. A preferred measurement for device speed entails measuring the drain-to-source current of each FET, and dividing the resultant sum by the device gate channel width.Type: GrantFiled: November 1, 2002Date of Patent: November 23, 2004Assignee: International Business Machines CorporationInventors: Roger W. Fleury, Jon A. Patrick
-
Publication number: 20030052704Abstract: This invention teaches an apparatus and method for determining a more efficient quality assurance or reliability test screen without falsely rejecting, i.e., over stressing, short channel length devices during voltage stress test screening. Short channel lengths devices fabricated on a semiconductor wafer have a higher tendency to fail at voltage levels that would otherwise not harm long channel length devices. The failures, however, are not related to device defects. Protection to the more vulnerable devices is provided by determining the speed of the die prior to the voltage test screen, thus, segregating the devices based on operational speed performance. Next, a lower voltage is effectively applied during wafer probe test to the faster devices, which directly correspond to the population of short channel devices. A preferred measurement for device speed entails measuring the drain-to-source current of each FET, and dividing the resultant sum by the device gate channel width.Type: ApplicationFiled: November 1, 2002Publication date: March 20, 2003Inventors: Roger W. Fleury, Jon A. Patrick
-
Patent number: 6512392Abstract: Method for determining a more efficient quality assurance or reliability test screen without falsely rejecting, i.e., over stressing, short channel length devices during voltage stress test screening. Short channel lengths devices fabricated on a semiconductor wafer have a higher tendency to fail at voltage levels that would otherwise not harm long channel length devices. The failures, however, are not related to device defects. Protection to the more vulnerable devices is provided by determining the speed of the die prior to the voltage test screen, thus, segregating the devices based on operational speed performance. Next, a lower voltage is effetively applied during wafer probe test to the faster devices, which directly correspond to the population of short channel devices.Type: GrantFiled: December 15, 2000Date of Patent: January 28, 2003Assignee: International Business Machines CorporationInventors: Roger W. Fleury, Jon A. Patrick
-
Publication number: 20010000649Abstract: This invention teaches an apparatus and method for determining a more efficient quality assurance or reliability test screen without falsely rejecting, i.e., over stressing, short channel length devices during voltage stress test screening. Short channel lengths devices fabricated on a semiconductor wafer have a higher tendency to fail at voltage levels that would otherwise not harm long channel length devices. The failures, however, are not related to device defects. Protection to the more vulnerable devices is provided by determining the speed of the die prior to the voltage test screen, thus, segregating the devices based on operational speed performance. Next, a lower voltage is effectively applied during wafer probe test to the faster devices, which directly correspond to the population of short channel devices. A preferred measurement for device speed entails measuring the drain-to-source current of each FET, and dividing the resultant sum by the device gate channel width.Type: ApplicationFiled: December 15, 2000Publication date: May 3, 2001Inventors: Roger W. Fleury, Jon A. Patrick
-
Patent number: 5804503Abstract: A method and structure for reducing short circuits in semiconductor devices is disclosed. A three layer interlevel dielectric structure is formed over a semiconductor substrate, which typically comprises a first metallization level, M1. The three layer dielectric includes a first insulator layer, a middle spin-on glass (SOG) layer, and a top second insulator layer. The spin-on glass fills defects in the surface of the first insulator layer created during planarization using chemical-mechanical-polishing (CMP). Prior to deposition of the second insulator, a first via is etched through the SOG film and the first insulator layer to expose a portion of the semiconductor substrate, typically a conductive metal. A conductive metal is deposited into the first via and planarized to form a metal interconnection stud. Because the surface defects are filled and covered with the SOG film, none of the deposited metal enters the defects, and short circuits with the stud are greatly reduced.Type: GrantFiled: July 24, 1996Date of Patent: September 8, 1998Assignee: International Business Machines CorporationInventors: Robert Kenneth Leidy, Jeffrey Scott Miller, Jon A. Patrick
-
Patent number: 5710460Abstract: A method and structure for reducing short circuits in semiconductor devices is disclosed. A three layer interlevel dielectric structure is formed over a semiconductor substrate, which typically comprises a first metallization level, M1. The three layer dielectric includes a first insulator layer, a middle spin-on glass (SOG) layer, and a top second insulator layer. The spin-on glass fills defects in the surface of the first insulator layer created during planarization using chemical-mechanical-polishing (CMP). Prior to deposition of the second insulator, a first via is etched through the SOG film and the first insulator layer to expose a portion of the semiconductor substrate, typically a conductive metal. A conductive metal is deposited into the first via and planarized to form a metal interconnection stud. Because the surface defects are filled and covered with the SOG film, none of the deposited metal enters the defects, and short circuits with the stud are greatly reduced.Type: GrantFiled: April 21, 1995Date of Patent: January 20, 1998Assignee: International Business Machines CorporationInventors: Robert Kenneth Leidy, Jeffrey Scott Miller, Jon A. Patrick, Rosemary Ann Previti-Kelly