Patents by Inventor Jon Armann Steinsson

Jon Armann Steinsson has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11607693
    Abstract: Certain aspects of the technology disclosed herein include an apparatus and method for forming nanoparticles. The method includes a mechanical milling process induced by aerodynamic, centrifugal, and centripetal forces and further augmented by ultrasound, magnetic pulse, and high voltage impact. A nanoparticle mill having an atmospheric and luminance controlled environment can form precisely calibrated nanoparticles. A nanoparticle mill can include first aerodynamic vane configured to rotate around a central axis of the nanoparticle mill in a first direction, and a second aerodynamic vane configured to rotate around the central axis in a second direction. An aerodynamic shape of an aerodynamic vane can be configured to cause particles within the nanoparticle mill to flow around the aerodynamic vane. The nanoparticle mill can include a primary product line, a nanoparticle sampling line, a particle programming array, a solidifying chamber, or any combination thereof.
    Type: Grant
    Filed: May 4, 2021
    Date of Patent: March 21, 2023
    Assignee: Nanom Inc.
    Inventors: Antonijo Licitar, Jon Armann Steinsson
  • Patent number: 11305343
    Abstract: Certain aspects of the technology disclosed herein include an apparatus and method for programming a crystal lattice structure of a nanoparticle. A particle programming apparatus can include an input channel connected a particle sampling system. The particle sampling system can direct freshly milled nanoparticles to the particle programming apparatus if the nanoparticles are determined to be below a threshold size. The particle programming apparatus can include one or more programming devices configured to alter a crystal lattice of the received nanoparticles including an ultrasonic sound generator, a magnetic pulse generator, and a voltage generator. The one or more programming devices applies any of a sound, magnetic pulse, and voltage to the received nanoparticles within a time threshold of receiving the nanoparticles from the mill core.
    Type: Grant
    Filed: February 28, 2019
    Date of Patent: April 19, 2022
    Assignee: Nanom Inc.
    Inventors: Antonijo Licitar, Jon Armann Steinsson
  • Patent number: 11154868
    Abstract: Certain aspects of the technology disclosed herein include an apparatus and method for forming nanoparticles. The method includes a mechanical milling process induced by aerodynamic, centrifugal, and centripetal forces and further augmented by ultrasound, magnetic pulse, and high voltage impact. A nanoparticle mill having an atmospheric and luminance controlled environment can form precisely calibrated nanoparticles. A nanoparticle mill can include first aerodynamic vane configured to rotate around a central axis of the nanoparticle mill in a first direction, and a second aerodynamic vane configured to rotate around the central axis in a second direction. An aerodynamic shape of an aerodynamic vane can be configured to cause particles within the nanoparticle mill to flow around the aerodynamic vane. The nanoparticle mill can include a primary product line, a nanoparticle sampling line, a particle programming array, a solidifying chamber, or any combination thereof.
    Type: Grant
    Filed: September 22, 2017
    Date of Patent: October 26, 2021
    Assignee: Greenvolt Nano Inc.
    Inventors: Antonijo Licitar, Jon Armann Steinsson
  • Publication number: 20210322997
    Abstract: Certain aspects of the technology disclosed herein include an apparatus and method for forming nanoparticles. The method includes a mechanical milling process induced by aerodynamic, centrifugal, and centripetal forces and further augmented by ultrasound, magnetic pulse, and high voltage impact. A nanoparticle mill having an atmospheric and luminance controlled environment can form precisely calibrated nanoparticles. A nanoparticle mill can include first aerodynamic vane configured to rotate around a central axis of the nanoparticle mill in a first direction, and a second aerodynamic vane configured to rotate around the central axis in a second direction. An aerodynamic shape of an aerodynamic vane can be configured to cause particles within the nanoparticle mill to flow around the aerodynamic vane. The nanoparticle mill can include a primary product line, a nanoparticle sampling line, a particle programming array, a solidifying chamber, or any combination thereof.
    Type: Application
    Filed: May 4, 2021
    Publication date: October 21, 2021
    Inventors: Antonijo Licitar, Jon Armann Steinsson
  • Publication number: 20190299282
    Abstract: Certain aspects of the technology disclosed herein include an apparatus and method for programming a crystal lattice structure of a nanoparticle. A particle programming apparatus can include an input channel connected a particle sampling system. The particle sampling system can direct freshly milled nanoparticles to the particle programming apparatus if the nanoparticles are determined to be below a threshold size. The particle programming apparatus can include one or more programming devices configured to alter a crystal lattice of the received nanoparticles including an ultrasonic sound generator, a magnetic pulse generator, and a voltage generator. The one or more programming devices applies any of a sound, magnetic pulse, and voltage to the received nanoparticles within a time threshold of receiving the nanoparticles from the mill core.
    Type: Application
    Filed: February 28, 2019
    Publication date: October 3, 2019
    Inventors: Antonijo Licitar, Jon Armann Steinsson
  • Publication number: 20180264479
    Abstract: Certain aspects of the technology disclosed herein include an apparatus and method for forming nanoparticles. The method includes a mechanical milling process induced by aerodynamic, centrifugal, and centripetal forces and further augmented by ultrasound, magnetic pulse, and high voltage impact. A nanoparticle mill having an atmospheric and luminance controlled environment can form precisely calibrated nanoparticles. A nanoparticle mill can include first aerodynamic vane configured to rotate around a central axis of the nanoparticle mill in a first direction, and a second aerodynamic vane configured to rotate around the central axis in a second direction. An aerodynamic shape of an aerodynamic vane can be configured to cause particles within the nanoparticle mill to flow around the aerodynamic vane. The nanoparticle mill can include a primary product line, a nanoparticle sampling line, a particle programming array, a solidifying chamber, or any combination thereof.
    Type: Application
    Filed: September 22, 2017
    Publication date: September 20, 2018
    Inventors: Antonijo Licitar, Jon Armann Steinsson
  • Publication number: 20180243750
    Abstract: Certain aspects of the technology disclosed herein include an apparatus and method for forming nanoparticles. The method includes a mechanical milling process induced by aerodynamic, centrifugal, and centripetal forces and further augmented by ultrasound, magnetic pulse, and high voltage impact. A nanoparticle collider apparatus having an atmospheric and luminance controlled environment can form precisely calibrated nanoparticles. A nanoparticle mill can include first aerodynamic vane configured to rotate around a central axis of the nanoparticle mill in a first direction, and a second aerodynamic vane configured to rotate around the central axis in a second direction. An aerodynamic shape of an aerodynamic vane can be configured to cause particles within the nanoparticle mill to flow around the aerodynamic vane. The nanoparticle mill can include a primary product line, a nanoparticle sampling line, a particle programming array, a solidifying chamber, or any combination thereof.
    Type: Application
    Filed: November 15, 2017
    Publication date: August 30, 2018
    Inventors: Antonijo Licitar, Jon Armann Steinsson