Patents by Inventor Jon Bennett Jansma

Jon Bennett Jansma has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8987984
    Abstract: A fluorescent lamp includes a phosphor composition comprising: Y2O3:Eu3+ (YEO); at least one of LaPO4:Ce3+, Tb3+ (LAP), MgAl11O19:Ce3+, Tb3+ (CAT) or GdMgB5O10:Ce3+, Tb3+ (CBT); a special BAMn phosphor, (Ba,Sr,Ca)(Mg1-xMnx)Al10O17:Eu2+, with a specific amount of Mn (x) as disclosed herein, and optionally halophosphor, with the proviso that there is no BaMgAl10O17:Eu2+ (BAM).
    Type: Grant
    Filed: October 19, 2012
    Date of Patent: March 24, 2015
    Assignee: General Electric Company
    Inventors: William Erwin Cohen, Fangming Du, William Beers, Jon Bennett Jansma
  • Patent number: 8866372
    Abstract: Mercury vapor discharge fluorescent lamps are provided. The lamp can include a lamp envelope enclosing a discharge space and having an inner surface. First and second electrodes can be positioned on the lamp, such as on opposite ends of the lamp envelope. An ionizable medium that includes mercury and an inert gas can be within said lamp envelope. A phosphor layer can be on the inner surface of the lamp envelope. The phosphor layer generally includes a phosphor blend of a calcium halophosphor, a blue phosphor having an emission peak at about 440 nm to about 490 nm, a blue-green phosphor having an emission peak at about 475 nm to about 530 nm, and a red phosphor having an emission peak at about 600 nm to about 650 nm.
    Type: Grant
    Filed: December 5, 2011
    Date of Patent: October 21, 2014
    Assignee: General Electric Company
    Inventors: William Winder Beers, Jon Bennett Jansma, Fangming Du, William Erwin Cohen, Alok Mani Srivastava, Samuel Joseph Camardello, Holly Ann Comanzo
  • Patent number: 8851950
    Abstract: Improved recyclability of phosphors in fluorescent lamps is provided. A fluorescent lamp is constructed with phosphor particles having a specific surface area less than a certain predetermined value. During recycling, these phosphor particles are more readily separated from the basing cement used in such fluorescent lamp. A method is also provided by which such phosphors are more readily separated from the basing cement.
    Type: Grant
    Filed: September 26, 2012
    Date of Patent: October 7, 2014
    Assignee: General Electric Company
    Inventors: Jon Bennett Jansma, David James Monk
  • Publication number: 20140111082
    Abstract: A fluorescent lamp includes a phosphor composition comprising: Y2O3:Eu3+ (YEO); at least one of LaPO4:Ce3+, Tb3+ (LAP), MgAl11O19:Ce3+, Tb3+ (CAT) or GdMgB5O10:Ce3+, Tb3+ (CBT); a special BAMn phosphor, (Ba,Sr,Ca)(Mg1-xMnx)Al10O17:Eu2+, with a specific amount of Mn (x) as disclosed herein, and optionally halophosphor, with the proviso that there is no BaMgAl10O17:Eu2+ (BAM).
    Type: Application
    Filed: October 19, 2012
    Publication date: April 24, 2014
    Applicant: General Electric Company
    Inventors: William Erwin Cohen, Fangming Du, William Beers, Jon Bennett Jansma
  • Publication number: 20140084779
    Abstract: Improved recyclability of phosphors in fluorescent lamps is provided. A fluorescent lamp is constructed with phosphor particles having a specific surface area less than a certain predetermined value. During recycling, these phosphor particles are more readily separated from the basing cement used in such fluorescent lamp. A method is also provided by which such phosphors are more readily separated from the basing cement.
    Type: Application
    Filed: September 26, 2012
    Publication date: March 27, 2014
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Jon Bennett JANSMA, David James MONK
  • Publication number: 20140072486
    Abstract: A method is provided for recovering phosphor materials from fluorescent lamps. Particles created from the lamps are washed by mixing with water and carboxylic (e.g., acetic) acid while controlling the temperature. The carboxylic acid reacts with basing cement, particularly calcium carbonate, without significant reaction with the phosphors. After this reaction, the phosphors can be removed and e.g., reused in the production of fluorescent lamps.
    Type: Application
    Filed: September 7, 2012
    Publication date: March 13, 2014
    Inventor: Jon Bennett Jansma
  • Publication number: 20140057517
    Abstract: A method is provided for removing organic impurities in the recycling of phosphors from fluorescent lamps. Particles created from the lamps are washed with a bleaching agent to decompose the organic materials. The organic materials are thereby solubilized and can be removed. The phosphors can then be recovered and reused to manufacture fluorescent lamps.
    Type: Application
    Filed: August 27, 2012
    Publication date: February 27, 2014
    Inventors: Jon Bennett JANSMA, David James Monk
  • Patent number: 8565364
    Abstract: A method for providing a boron-lined neutron detector. The method includes providing a boron-containing material and providing water. The method includes mixing the boron-containing material into the water to create a water-based liquid mixture and providing a substrate of a cathode of the neutron detector. The method includes applying the water-based liquid mixture to the substrate of the cathode and removing water from the water-based liquid applied to the substrate to leave a boron-containing layer upon the substrate that is sensitive to neutron impingement. The step of providing a boron-containing material may be to provide the material to include B-10.
    Type: Grant
    Filed: November 16, 2009
    Date of Patent: October 22, 2013
    Assignee: General Electric Company
    Inventors: James Michael Lustig, Jon Bennett Jansma
  • Patent number: 8502157
    Abstract: A neutron detector includes an exterior shell bounding an interior volume. The neutron detector includes at least a wall portion serving as a cathode. In one example the wall portion has microfeatures. The neutron detector includes a central structure located within the interior volume and serving as an anode. The neutron detector includes a boron coating on the wall portion. In on example, the boron coating is applied by an electrostatic spray process. In one example, the boron coating conforms to the microfeatures on the wall portion. In one example, the wall portion has a thickness of between 2 to 5 microns. The neutron detector includes an electrical connector operatively connected to the central structure for transmission of a signal collected by the central structure. An associated method provides for depositing the boron coating.
    Type: Grant
    Filed: September 9, 2011
    Date of Patent: August 6, 2013
    Assignee: General Electric Company
    Inventors: James Michael Lustig, Jon Bennett Jansma
  • Patent number: 8461753
    Abstract: A low-pressure discharge lamp includes, in an exemplary embodiment, a light-transmissive envelope, a fill-gas composition capable of sustaining a discharge sealed inside the light-transmissive envelope, and a phosphor composition at least partially disposed on an interior surface of the light-transmissive envelope. The phosphor composition is disposed on an interior surface of the light-transmissive envelope in a plurality of layers that include at least a basecoat phosphor layer and a topcoat phosphor layer. The basecoat phosphor layer includes at least one halophosphor and the topcoat phosphor layer includes a blend of at least two rare earth phosphors. The basecoat phosphor layer has a greater Color Rendering Index (CRI) value than the topcoat phosphor layer.
    Type: Grant
    Filed: October 25, 2011
    Date of Patent: June 11, 2013
    Assignee: General Electric Company
    Inventors: Fangming Du, William Winder Beers, Jon Bennett Jansma
  • Publication number: 20130140978
    Abstract: Mercury vapor discharge fluorescent lamps are provided. The lamp can include a lamp envelope enclosing a discharge space and having an inner surface. First and second electrodes can be positioned on the lamp, such as on opposite ends of the lamp envelope. An ionizable medium that includes mercury and an inert gas can be within said lamp envelope. A phosphor layer can be on the inner surface of the lamp envelope. The phosphor layer generally includes a phosphor blend of a calcium halophosphor, a blue phosphor having an emission peak at about 440 nm to about 490 nm, a blue-green phosphor having an emission peak at about 475 nm to about 530 nm, and a red phosphor having an emission peak at about 600 nm to about 650 nm.
    Type: Application
    Filed: December 5, 2011
    Publication date: June 6, 2013
    Inventors: William Winder BEERS, Jon Bennett Jansma, Fangming Du, William Erwin Cohen, Alok Mani Srivastava, Samuel Joseph Camardello, Holly Ann Comanzo
  • Publication number: 20130134862
    Abstract: A fluorescent lamp is provided including a five phosphor blend comprising four rare earth phosphors, including BAMn, and a non-rare earth white halophosphate phosphor. This phosphor blend provides a lamp that exhibits high color rendering index (CRI), of at least about 85, i.e. at least 87, while simultaneously achieving good lumen output, or lumens per watt (LPW), of at least about 70, i.e. at least 75, at all CCTs, and particularly at lower CCT of between about 3000K and 4100K. The phosphor system provided includes a rare earth-doped red emitting phosphor, a rare earth-doped blue emitting phosphor, a rare earth-doped green-blue emitting phosphor, a rare earth-doped green emitting phosphor and a non-rare earth white halophosphate phosphor.
    Type: Application
    Filed: November 29, 2011
    Publication date: May 30, 2013
    Inventors: Fangming Du, William Winder Beers, Jon Bennett Jansma
  • Publication number: 20130134861
    Abstract: Disclosed herein is a mercury vapor discharge lamp and methods for making same, where the lamp comprises a phosphor coating layer disposed on at least a portion of the inner surface of the lamp envelope. The phosphor coating layer comprises a phosphor composition comprising a colloidal alumina, particles comprising at least one rare earth compound, and phosphor particles, and the particles comprising at least one rare earth compound are present in the phosphor composition in an amount from about 0.5 percent to about 5 percent of the weight of the phosphor particles. The presence of colloidal alumina, the rare earth compound, and these selected phosphors may contribute to an increase at least one of lumen output or lumen maintenance for the lamp, as compared with the same mercury vapor discharge lamp comprising the same phosphor composition without colloidal alumina and without the particles comprising at least one rare earth compound.
    Type: Application
    Filed: November 29, 2011
    Publication date: May 30, 2013
    Inventors: Jon Bennett Jansma, Jianmin He, Fangming Du, William Erwin Cohen
  • Patent number: 8446085
    Abstract: A fluorescent lamp comprises a glass envelope that is light transmitting. Also included is means for providing a discharge inside the envelope. A discharge-sustaining fill includes mercury and an inert gas sealed inside the envelope. An underlying phosphor-containing layer is disposed inside the envelope. The underlying layer includes zinc silicate phosphor. A protective phosphor-containing layer is disposed over the underlying layer at a location that is more distal from the glass than the underlying layer. A ratio of a surface density of the protective layer to a surface density of the underlying layer is at least 0.4:1.
    Type: Grant
    Filed: September 23, 2011
    Date of Patent: May 21, 2013
    Assignee: General Electric Company
    Inventors: Jianmin He, Jon Bennett Jansma, William Erwin Cohen
  • Publication number: 20130099656
    Abstract: A low-pressure discharge lamp includes, in an exemplary embodiment, a light-transmissive envelope, a fill-gas composition capable of sustaining a discharge sealed inside the light-transmissive envelope, and a phosphor composition at least partially disposed on an interior surface of the light-transmissive envelope. The phosphor composition is disposed on an interior surface of the light-transmissive envelope in a plurality of layers that include at least a basecoat phosphor layer and a topcoat phosphor layer. The basecoat phosphor layer includes at least one halophosphor and the topcoat phosphor layer includes a blend of at least two rare earth phosphors. The basecoat phosphor layer has a greater Color Rendering Index (CRI) value than the topcoat phosphor layer.
    Type: Application
    Filed: October 25, 2011
    Publication date: April 25, 2013
    Inventors: Fangming DU, William Winder Beers, Jon Bennett Jansma
  • Publication number: 20130076228
    Abstract: A fluorescent lamp is provided including a phosphor blend comprising less than about 10% by weight rare earth phosphor, based on the total weight of the phosphor composition. This phosphor blend, when coated on a lamp, provides a lamp that exhibits high color rendering index (CRI), of at least 87, while simultaneously achieving low CCT, of less than about 4500K, i.e. of between about 3000K and 4500K. The phosphor system provided includes a non-rare earth strontium red broad band phosphor, a non-rare earth blue broad band halophosphor, and a rare earth-doped green-blue emitting phosphor, more specifically, a combination of SAR and blue-halo non-rare earth phosphors, and less than 20 wt % BAMn phosphor, based on the total weight of the phosphor system.
    Type: Application
    Filed: September 28, 2011
    Publication date: March 28, 2013
    Inventors: Fangming Du, William Winder Beers, Jon Bennett Jansma, William Erwin Cohen
  • Publication number: 20130076226
    Abstract: A fluorescent lamp comprises a glass envelope that is light transmitting. Also included is means for providing a discharge inside the envelope. A discharge-sustaining fill includes mercury and an inert gas sealed inside the envelope. An underlying phosphor-containing layer is disposed inside the envelope. The underlying layer includes zinc silicate phosphor. A protective phosphor-containing layer is disposed over the underlying layer at a location that is more distal from the glass than the underlying layer. A ratio of a surface density of the protective layer to a surface density of the underlying layer is at least 0.4:1.
    Type: Application
    Filed: September 23, 2011
    Publication date: March 28, 2013
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Jianmin HE, Jon Bennett JANSMA, William Erwin COHEN
  • Publication number: 20130062531
    Abstract: A neutron detector includes an exterior shell bounding an interior volume. The neutron detector includes at least a wall portion serving as a cathode. In one example the wall portion has microfeatures. The neutron detector includes a central structure located within the interior volume and serving as an anode. The neutron detector includes a boron coating on the wall portion. In on example, the boron coating is applied by an electrostatic spray process. In one example, the boron coating conforms to the microfeatures on the wall portion. In one example, the wall portion has a thickness of between 2 to 5 microns. The neutron detector includes an electrical connector operatively connected to the central structure for transmission of a signal collected by the central structure. An associated method provides for depositing the boron coating.
    Type: Application
    Filed: September 9, 2011
    Publication date: March 14, 2013
    Applicant: General Electric Company
    Inventors: James Michael Lustig, Jon Bennett Jansma
  • Publication number: 20130026905
    Abstract: A fluorescent lamp including the four rare earth phosphor system provided herein exhibits high color rendering index (CRI), of at least 87, while simultaneously achieving high lumen output, or lumens per watt (LPW), of at least 80. The phosphor coating may be disposed in a one or two layer coating format. The four rare earth phosphor system includes a red emitting phosphor, a green emitting phosphor, a blue emitting phosphor, and a blue-green emitting phosphor, all four phosphors being rare earth-doped phosphor compositions.
    Type: Application
    Filed: July 27, 2011
    Publication date: January 31, 2013
    Inventors: Fangming Du, William Winder Beers, Jon Bennett Jansma, William Erwin Cohen
  • Patent number: 8134294
    Abstract: Disclosed herein is a low pressure discharge lamp having a coating disposed upon at least a portion of inner lead-in wires, wherein the coating comprises refractory nanoparticles. Also disclosed herein, in particular, are fluorescent lamps having a coating disposed upon at least a portion of inner lead-in wires, the coating comprising refractory oxide nanoparticles having a median primary particle size of less than about 70 nm, with a thickness of from about 0.5 micrometer to about 10 micrometer. Disclosed advantages may include lessened end discoloration over the operational lifetime of the lamp, enhanced lumen maintenance, and inhibited mercury consumption.
    Type: Grant
    Filed: May 25, 2010
    Date of Patent: March 13, 2012
    Assignee: General Electric Company
    Inventor: Jon Bennett Jansma