Patents by Inventor Jon Chadwick

Jon Chadwick has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20200102217
    Abstract: The present disclosure relates to a wafer-level package that includes a first thinned die having a first device layer, a multilayer redistribution structure, a first mold compound, and a second mold compound. The multilayer redistribution structure includes redistribution interconnects that connect the first device layer to package contacts on a bottom surface of the multilayer redistribution structure. Herein, the connections between the redistribution interconnects and the first device layer are solder-free. The first mold compound resides over the multilayer redistribution structure and around the first thinned die, and extends beyond a top surface of the first thinned die to define an opening within the first mold compound and over the first thinned die. The second mold compound fills the opening and is in contact with the top surface of the first thinned die.
    Type: Application
    Filed: December 4, 2019
    Publication date: April 2, 2020
    Inventors: Julio C. Costa, Jon Chadwick, David Jandzinski, Merrill Albert Hatcher, JR., Jonathan Hale Hammond
  • Patent number: 10600711
    Abstract: The present disclosure relates to a packaging process to enhance thermal and electrical performance of a wafer-level package. The wafer-level package with enhanced performance includes a first thinned die having a first device layer, a multilayer redistribution structure, a first mold compound, and a second mold compound. The multilayer redistribution structure includes package contacts on a bottom surface of the multilayer redistribution structure and redistribution interconnects connecting the first device layer to the package contacts. The first mold compound resides over the multilayer redistribution structure and around the first thinned die, and extends beyond a top surface of the first thinned die to define a cavity within the first mold compound and over the first thinned die. The second mold compound fills the cavity and is in contact with the top surface of the first thinned die.
    Type: Grant
    Filed: October 23, 2018
    Date of Patent: March 24, 2020
    Assignee: Qorvo US, Inc.
    Inventors: Julio C. Costa, Jan Edward Vandemeer, Jonathan Hale Hammond, Merrill Albert Hatcher, Jr., Jon Chadwick
  • Patent number: 10589993
    Abstract: The present disclosure relates to a wafer-level package that includes a first thinned die having a first device layer, a multilayer redistribution structure, a first mold compound, and a second mold compound. The multilayer redistribution structure includes redistribution interconnects that connect the first device layer to package contacts on a bottom surface of the multilayer redistribution structure. Herein, the connections between the redistribution interconnects and the first device layer are solder-free. The first mold compound resides over the multilayer redistribution structure and around the first thinned die, and extends beyond a top surface of the first thinned die to define an opening within the first mold compound and over the first thinned die. The second mold compound fills the opening and is in contact with the top surface of the first thinned die.
    Type: Grant
    Filed: May 22, 2017
    Date of Patent: March 17, 2020
    Assignee: Qorvo US, Inc.
    Inventors: Julio C. Costa, Jon Chadwick, David Jandzinski, Merrill Albert Hatcher, Jr., Jonathan Hale Hammond
  • Patent number: 10586747
    Abstract: The present disclosure relates to a mold module that includes a device layer, a number of first bump structures, a first mold compound, a stop layer, and a second mold compound. The device layer includes a number of input/output (I/O) contacts at a top surface of the device layer. Each first bump structure is formed over the device layer and electronically coupled to a corresponding I/O contact. The first mold compound resides over the device layer, and a portion of each first bump structure is exposed through the first mold compound. The stop layer is formed underneath the device layer. The second mold compound resides underneath the stop layer, such that the stop layer separates the device layer from the second mold compound.
    Type: Grant
    Filed: May 30, 2018
    Date of Patent: March 10, 2020
    Assignee: Qorvo US, Inc.
    Inventors: Julio C. Costa, Merrill Albert Hatcher, Jr., Peter V. Wright, Jon Chadwick
  • Patent number: 10553564
    Abstract: The present disclosure relates to a microelectronics package with vertically stacked flip-chip dies, and a process for making the same. The disclosed microelectronics package includes a module board, a first thinned flip-chip die with a through-die via, a second flip-chip die with a package contact at the bottom, and a mold compound. Herein, a top portion of the through-die via is exposed at top of the first thinned flip-chip die. The first thinned flip-chip die and the mold compound reside over the module substrate. The mold compound surrounds the first thinned flip-chip die and extends above the first thinned flip-chip die to define an opening. The second flip-chip die, which has a smaller plane size than the first thinned flip-chip die, resides within the opening and is stacked with the first thinned flip-chip die by coupling the package contact to the exposed top portion of the through-die via.
    Type: Grant
    Filed: June 11, 2018
    Date of Patent: February 4, 2020
    Assignee: Qorvo US, Inc.
    Inventors: Julio C. Costa, Robert Aigner, Gernot Fattinger, Dirk Robert Walter Leipold, George Maxim, Baker Scott, Merrill Albert Hatcher, Jr., Jon Chadwick
  • Patent number: 10549988
    Abstract: The present disclosure relates to a wafer-level package that includes a first thinned die having a first device layer, a multilayer redistribution structure, a first mold compound, and a second mold compound. The multilayer redistribution structure includes redistribution interconnects that connect the first device layer to package contacts on a bottom surface of the multilayer redistribution structure. Herein, the connections between the redistribution interconnects and the first device layer are solder-free. The first mold compound resides over the multilayer redistribution structure and around the first thinned die, and extends beyond a top surface of the first thinned die to define an opening within the first mold compound and over the first thinned die. The second mold compound fills the opening and is in contact with the top surface of the first thinned die.
    Type: Grant
    Filed: May 22, 2017
    Date of Patent: February 4, 2020
    Assignee: Qorvo US, Inc.
    Inventors: Julio C. Costa, Jon Chadwick, David Jandzinski, Merrill Albert Hatcher, Jr., Jonathan Hale Hammond
  • Patent number: 10529639
    Abstract: The present disclosure relates to a packaging process to enhance thermal and electrical performance of a wafer-level package. The wafer-level package with enhanced performance includes a first thinned die having a first device layer, a multilayer redistribution structure, a first mold compound, and a second mold compound. The multilayer redistribution structure includes package contacts on a bottom surface of the multilayer redistribution structure and redistribution interconnects connecting the first device layer to the package contacts. The first mold compound resides over the multilayer redistribution structure and around the first thinned die, and extends beyond a top surface of the first thinned die to define a cavity within the first mold compound and over the first thinned die. The second mold compound fills the cavity and is in contact with the top surface of the first thinned die.
    Type: Grant
    Filed: October 23, 2018
    Date of Patent: January 7, 2020
    Assignee: Qorvo US, Inc.
    Inventors: Julio C. Costa, Jan Edward Vandemeer, Jonathan Hale Hammond, Merrill Albert Hatcher, Jr., Jon Chadwick
  • Publication number: 20190378819
    Abstract: The present disclosure relates to a microelectronics package with vertically stacked flip-chip dies, and a process for making the same. The disclosed microelectronics package includes a module board, a first thinned flip-chip die with a through-die via, a second flip-chip die with a package contact at the bottom, and a mold compound. Herein, a top portion of the through-die via is exposed at top of the first thinned flip-chip die. The first thinned flip-chip die and the mold compound reside over the module substrate. The mold compound surrounds the first thinned flip-chip die and extends above the first thinned flip-chip die to define an opening. The second flip-chip die, which has a smaller plane size than the first thinned flip-chip die, resides within the opening and is stacked with the first thinned flip-chip die by coupling the package contact to the exposed top portion of the through-die via.
    Type: Application
    Filed: June 11, 2018
    Publication date: December 12, 2019
    Inventors: Julio C. Costa, Robert Aigner, Gernot Fattinger, Dirk Robert Walter Leipold, George Maxim, Baker Scott, Merrill Albert Hatcher, JR., Jon Chadwick
  • Publication number: 20190378821
    Abstract: The present disclosure relates to a microelectronics package with vertically stacked flip-chip dies, and a process for making the same. The disclosed microelectronics package includes a module board, a first thinned flip-chip die with a through-die via, a second flip-chip die with a package contact at the bottom, and a mold compound. Herein, a top portion of the through-die via is exposed at top of the first thinned flip-chip die. The first thinned flip-chip die and the mold compound reside over the module substrate. The mold compound surrounds the first thinned flip-chip die and extends above the first thinned flip-chip die to define an opening. The second flip-chip die, which has a smaller plane size than the first thinned flip-chip die, resides within the opening and is stacked with the first thinned flip-chip die by coupling the package contact to the exposed top portion of the through-die via.
    Type: Application
    Filed: July 31, 2019
    Publication date: December 12, 2019
    Inventors: Julio C. Costa, Robert Aigner, Gernot Fattinger, Dirk Robert Walter Leipold, George Maxim, Baker Scott, Merrill Albert Hatcher, JR., Jon Chadwick
  • Patent number: 10486963
    Abstract: The present disclosure relates to a wafer-level package that includes a first thinned die, a multilayer redistribution structure, a first mold compound, and a second mold compound. The first thinned die resides over a top surface of the multilayer redistribution structure. The multilayer redistribution structure includes at least one support pad that is on a bottom surface of the multilayer redistribution structure and vertically aligned with the first thinned die. The first mold compound resides over the multilayer redistribution structure and around the first thinned die, and extends beyond a top surface of the first thinned die to define an opening within the first mold compound and over the first thinned die. The second mold compound fills the opening and is in contact with the top surface of the first thinned die.
    Type: Grant
    Filed: August 14, 2017
    Date of Patent: November 26, 2019
    Assignee: Qorvo US, Inc.
    Inventors: Merrill Albert Hatcher, Jr., Jonathan Hale Hammond, Jon Chadwick, Julio C. Costa, Jan Edward Vandemeer
  • Patent number: 10490471
    Abstract: The present disclosure relates to a wafer-level packaging process. According to an exemplary process, a precursor wafer that includes a device layer with a number of input/output (I/O) contacts, a number of bump structures over the device layer, the stop layer underneath the device layer, and a silicon handle layer underneath the stop layer is provided. Herein, each bump structure is electronically coupled to a corresponding I/O contact. A first mold compound is then applied over the device layer to encapsulate each bump structure. Next, the silicon handle layer is removed substantially. A second mold compound is applied to an exposed surface from which the silicon handle layer was removed. Finally, the first mold compound is thinned down to expose a portion of each bump structure.
    Type: Grant
    Filed: May 30, 2018
    Date of Patent: November 26, 2019
    Assignee: Qorvo US, Inc.
    Inventors: Julio C. Costa, Merrill Albert Hatcher, Jr., Peter V. Wright, Jon Chadwick
  • Patent number: 10490476
    Abstract: The present disclosure relates to a packaging process to enhance thermal and electrical performance of a wafer-level package. The wafer-level package with enhanced performance includes a first thinned die having a first device layer, a multilayer redistribution structure, a first mold compound, and a second mold compound. The multilayer redistribution structure includes package contacts on a bottom surface of the multilayer redistribution structure and redistribution interconnects connecting the first device layer to the package contacts. The first mold compound resides over the multilayer redistribution structure and around the first thinned die, and extends beyond a top surface of the first thinned die to define a cavity within the first mold compound and over the first thinned die. The second mold compound fills the cavity and is in contact with the top surface of the first thinned die.
    Type: Grant
    Filed: October 23, 2018
    Date of Patent: November 26, 2019
    Assignee: Qorvo US, Inc.
    Inventors: Julio C. Costa, Jan Edward Vandemeer, Jonathan Hale Hammond, Merrill Albert Hatcher, Jr., Jon Chadwick
  • Patent number: 10453765
    Abstract: The present disclosure relates to a wafer-level packaging process. According to an exemplary process, a precursor wafer that includes a device layer with a number of input/output (I/O) contacts, a number of bump structures over the device layer, the stop layer underneath the device layer, and a silicon handle layer underneath the stop layer is provided. Herein, each bump structure is electronically coupled to a corresponding I/O contact. A first mold compound is then applied over the device layer to encapsulate each bump structure. Next, the silicon handle layer is removed substantially. A second mold compound is applied to an exposed surface from which the silicon handle layer was removed. Finally, the first mold compound is thinned down to expose a portion of each bump structure.
    Type: Grant
    Filed: May 30, 2018
    Date of Patent: October 22, 2019
    Assignee: Qorvo US, Inc.
    Inventors: Julio C. Costa, Merrill Albert Hatcher, Jr., Peter V. Wright, Jon Chadwick
  • Patent number: 10442684
    Abstract: The present disclosure relates to a wafer-level package that includes a first thinned die, a multilayer redistribution structure, a first mold compound, and a second mold compound. The first thinned die resides over a top surface of the multilayer redistribution structure. The multilayer redistribution structure includes at least one support pad that is on a bottom surface of the multilayer redistribution structure and vertically aligned with the first thinned die. The first mold compound resides over the multilayer redistribution structure and around the first thinned die, and extends beyond a top surface of the first thinned die to define an opening within the first mold compound and over the first thinned die. The second mold compound fills the opening and is in contact with the top surface of the first thinned die.
    Type: Grant
    Filed: August 14, 2017
    Date of Patent: October 15, 2019
    Assignee: Qorvo US, Inc.
    Inventors: Merrill Albert Hatcher, Jr., Jonathan Hale Hammond, Jon Chadwick, Julio C. Costa, Jan Edward Vandemeer
  • Patent number: 10418297
    Abstract: The present disclosure relates to a wafer-level packaging process. According to an exemplary process, a precursor wafer that includes a device layer with a number of input/output (I/O) contacts, a number of bump structures over the device layer, the stop layer underneath the device layer, and a silicon handle layer underneath the stop layer is provided. Herein, each bump structure is electronically coupled to a corresponding I/O contact. A first mold compound is then applied over the device layer to encapsulate each bump structure. Next, the silicon handle layer is removed substantially. A second mold compound is applied to an exposed surface from which the silicon handle layer was removed. Finally, the first mold compound is thinned down to expose a portion of each bump structure.
    Type: Grant
    Filed: May 30, 2018
    Date of Patent: September 17, 2019
    Assignee: Qorvo US, Inc.
    Inventors: Julio C. Costa, Merrill Albert Hatcher, Jr., Peter V. Wright, Jon Chadwick
  • Patent number: 10377627
    Abstract: The present disclosure relates to a wafer-level package that includes a first thinned die, a multilayer redistribution structure, a first mold compound, and a second mold compound. The first thinned die resides over a top surface of the multilayer redistribution structure. The multilayer redistribution structure includes at least one support pad that is on a bottom surface of the multilayer redistribution structure and vertically aligned with the first thinned die. The first mold compound resides over the multilayer redistribution structure and around the first thinned die, and extends beyond a top surface of the first thinned die to define an opening within the first mold compound and over the first thinned die. The second mold compound fills the opening and is in contact with the top surface of the first thinned die.
    Type: Grant
    Filed: August 14, 2017
    Date of Patent: August 13, 2019
    Assignee: Qorvo US, Inc.
    Inventors: Merrill Albert Hatcher, Jr., Jonathan Hale Hammond, Jon Chadwick, Julio C. Costa, Jan Edward Vandemeer
  • Patent number: 10227231
    Abstract: The present disclosure relates to a wafer-level package that includes a first thinned die, a multilayer redistribution structure, a first mold compound, and a second mold compound. The first thinned die resides over a top surface of the multilayer redistribution structure. The multilayer redistribution structure includes at least one support pad that is on a bottom surface of the multilayer redistribution structure and vertically aligned with the first thinned die. The first mold compound resides over the multilayer redistribution structure and around the first thinned die, and extends beyond a top surface of the first thinned die to define an opening within the first mold compound and over the first thinned die. The second mold compound fills the opening and is in contact with the top surface of the first thinned die.
    Type: Grant
    Filed: August 14, 2017
    Date of Patent: March 12, 2019
    Assignee: Qorvo US, Inc.
    Inventors: Merrill Albert Hatcher, Jr., Jonathan Hale Hammond, Jon Chadwick, Julio C. Costa, Jan Edward Vandemeer
  • Publication number: 20190057922
    Abstract: The present disclosure relates to a packaging process to enhance thermal and electrical performance of a wafer-level package. The wafer-level package with enhanced performance includes a first thinned die having a first device layer, a multilayer redistribution structure, a first mold compound, and a second mold compound. The multilayer redistribution structure includes package contacts on a bottom surface of the multilayer redistribution structure and redistribution interconnects connecting the first device layer to the package contacts. The first mold compound resides over the multilayer redistribution structure and around the first thinned die, and extends beyond a top surface of the first thinned die to define a cavity within the first mold compound and over the first thinned die. The second mold compound fills the cavity and is in contact with the top surface of the first thinned die.
    Type: Application
    Filed: October 23, 2018
    Publication date: February 21, 2019
    Inventors: Julio C. Costa, Jan Edward Vandemeer, Jonathan Hale Hammond, Merrill Albert Hatcher, JR., Jon Chadwick
  • Patent number: 10196260
    Abstract: The present disclosure relates to a wafer-level package that includes a first thinned die, a multilayer redistribution structure, a first mold compound, and a second mold compound. The first thinned die resides over a top surface of the multilayer redistribution structure. The multilayer redistribution structure includes at least one support pad that is on a bottom surface of the multilayer redistribution structure and vertically aligned with the first thinned die. The first mold compound resides over the multilayer redistribution structure and around the first thinned die, and extends beyond a top surface of the first thinned die to define an opening within the first mold compound and over the first thinned die. The second mold compound fills the opening and is in contact with the top surface of the first thinned die.
    Type: Grant
    Filed: August 14, 2017
    Date of Patent: February 5, 2019
    Assignee: Qorvo US, Inc.
    Inventors: Merrill Albert Hatcher, Jr., Jonathan Hale Hammond, Jon Chadwick, Julio C. Costa, Jan Edward Vandemeer
  • Publication number: 20190013255
    Abstract: The present disclosure relates to a wafer-level packaging process. According to an exemplary process, a precursor wafer that includes a device layer with a number of input/output (I/O) contacts, a number of bump structures over the device layer, the stop layer underneath the device layer, and a silicon handle layer underneath the stop layer is provided. Herein, each bump structure is electronically coupled to a corresponding I/O contact. A first mold compound is then applied over the device layer to encapsulate each bump structure. Next, the silicon handle layer is removed substantially. A second mold compound is applied to an exposed surface from which the silicon handle layer was removed. Finally, the first mold compound is thinned down to expose a portion of each bump structure.
    Type: Application
    Filed: May 30, 2018
    Publication date: January 10, 2019
    Inventors: Julio C. Costa, Merrill Albert Hatcher, JR., Peter V. Wright, Jon Chadwick