Patents by Inventor Jon Conrad Schaeffer

Jon Conrad Schaeffer has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20170101707
    Abstract: A treated component and methods for forming a treated component are disclosed. The methods include providing an untreated component having an untreated creep strength. The untreated component is formed by a three-dimensional printing process, and is treated to yield the treated component having a treated creep strength. The treated component comprises an arrangement formed by the three-dimensional printing process, wherein the arrangement has been subjected to treating to increase creep strength.
    Type: Application
    Filed: December 16, 2016
    Publication date: April 13, 2017
    Inventors: Srikanth Chandrudu KOTTILINGAM, Jon Conrad SCHAEFFER
  • Publication number: 20170073806
    Abstract: An article treatment method includes providing an article including a substrate composed of a substrate material having an undesirable substrate feature. The undesirable substrate feature may include a recess, and a portion of the substrate containing the undesirable substrate feature may be removed to form a recess in a surface of the substrate. A feedstock mixture including a filler material and a liquid carrier is introduced into an HVAF apparatus having a combustion gas stream with a temperature greater than the melting point of the filler material. The filler material is applied to the recess by expelling the filler material while maintained at a temperature less than the melting point of the filler material by the liquid carrier. The filler material and an area of the substrate bordering the recess are heat treated, forming a treated portion.
    Type: Application
    Filed: September 10, 2015
    Publication date: March 16, 2017
    Inventors: Jon Conrad SCHAEFFER, Andrew Joseph DETOR
  • Patent number: 9555612
    Abstract: A treated component and methods for forming a treated component are disclosed. The methods include providing an untreated component having an untreated creep strength. The untreated component is formed by a three-dimensional printing process, and is treated to yield the treated component having a treated creep strength. The treated component comprises an arrangement formed by the three-dimensional printing process, wherein the arrangement has been subjected to treating to increase creep strength.
    Type: Grant
    Filed: February 19, 2014
    Date of Patent: January 31, 2017
    Assignee: General Electric Company
    Inventors: Srikanth Chandrudu Kottilingam, Jon Conrad Schaeffer
  • Publication number: 20160184888
    Abstract: An article and a method for forming a single crystal casting are disclosed. The article includes a single crystal nickel-based superalloy having a composition including greater than about 80 ppm boron (B) and a substantially single crystal microstructure with at least one grain boundary. A creep rupture strength of the article is substantially maintained up to a mismatched grain boundary of about 40 degrees. The method for forming a single crystal casting includes positioning a mold on a cooling plate, the mold including a single crystal selector, providing a molten nickel-based superalloy composition in the mold, the molten composition including greater than about 80 ppm boron (B), cooling the molten composition with the cooling plate, and forming a unidirectional temperature gradient by withdrawing the mold from within a heat source to form the single crystal casting including a substantially single crystal microstructure having at least one grain boundary.
    Type: Application
    Filed: September 5, 2014
    Publication date: June 30, 2016
    Inventors: Arthur S. PECK, Warren Tan KING, Jon Conrad SCHAEFFER
  • Publication number: 20160145728
    Abstract: A titanium aluminide application process and article with a titanium aluminide surface are disclosed. The process includes cold spraying titanium aluminide onto an article within a treatment region to form a titanium aluminide surface. The titanium aluminide surface includes a refined gamma/alpha2 structure and/or the titanium aluminide is cold sprayed from a solid feedstock of a pre-alloyed powder.
    Type: Application
    Filed: May 17, 2013
    Publication date: May 26, 2016
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Jon Conrad SCHAEFFER, Krishnamurthy Anand, Sundar Amancherla, Eklayva Calla
  • Patent number: 9132528
    Abstract: A system for refurbishing at least one article attached to an assembly includes a refurbishing vessel that contains at least one wall and at least one open portion; means for providing an abrasive media to the vessel, wherein the abrasive media is caused to flow around the surfaces of the at least one article when the vessel is positioned on the at least one article; means for conformably sealing the at least one open portion against the flow of abrasive media, wherein a seal is created that conforms to the contours of the at least one article and prevents the abrasive media from escaping between the at least one article and the at least one wall; and means for removing the abrasive media from the vessel.
    Type: Grant
    Filed: October 8, 2013
    Date of Patent: September 15, 2015
    Assignee: General Electric Company
    Inventors: Sanji Ekanayake, Jon Conrad Schaeffer, Surinder Singh Pabla, Alston Ilford Scipio, Ishmael Dean-El
  • Publication number: 20150231796
    Abstract: A treated component and methods for forming a treated component are disclosed. The methods include providing an untreated component having an untreated creep strength. The untreated component is formed by a three-dimensional printing process, and is treated to yield the treated component having a treated creep strength. The treated component comprises an arrangement formed by the three-dimensional printing process, wherein the arrangement has been subjected to treating to increase creep strength.
    Type: Application
    Filed: February 19, 2014
    Publication date: August 20, 2015
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Srikanth Chandrudu KOTTILINGAM, Jon Conrad SCHAEFFER
  • Patent number: 9034247
    Abstract: A cobalt-nickel base alloy is disclosed. The alloy includes, in weight percent: greater than about 4 % of Al, about 10 to about 20 % of W, about 10 to about 40 % Ni, about 5 to 20 % Cr and the balance Co and incidental impurities. The alloy has a microstructure that is substantially free of a CoAl phase having a B2 crystal structure and configured to form a continuous, adherent aluminum oxide layer on an alloy surface upon exposure to a high-temperature oxidizing environment. A method of making an article of the alloy includes: selecting the alloy; forming an article from the alloy; solution-treating the alloy; and aging the alloy to form an alloy microstructure that is substantially free of a CoAl phase having a B2 crystal structure, wherein the alloy is configured to form a continuous, adherent aluminum oxide layer on an alloy surface upon exposure to a high-temperature oxidizing environment.
    Type: Grant
    Filed: June 9, 2011
    Date of Patent: May 19, 2015
    Assignee: General Electric Company
    Inventors: Akane Suzuki, Andrew John Elliott, Michael Francis Xavier Gigliotti, Jr., Kathleen Blanche Morey, Jon Conrad Schaeffer, Pazhayannur Subramanian
  • Publication number: 20150099429
    Abstract: A system for refurbishing at least one article attached to an assembly includes a refurbishing vessel that contains at least one wall and at least one open portion; means for providing an abrasive media to the vessel, wherein the abrasive media is caused to flow around the surfaces of the at least one article when the vessel is positioned on the at least one article; means for conformably sealing the at least one open portion against the flow of abrasive media, wherein a seal is created that conforms to the contours of the at least one article and prevents the abrasive media from escaping between the at least one article and the at least one wall; and means for removing the abrasive media from the vessel.
    Type: Application
    Filed: October 8, 2013
    Publication date: April 9, 2015
    Applicant: General Electric Company
    Inventors: Sanji Ekanayake, Jon Conrad Schaeffer, Surinder Singh Pabla, Alston Ilford Scipio, Ishmael Dean-EL
  • Publication number: 20150060025
    Abstract: Thermal spray coating methods and thermal spray coated articles are disclosed. The thermal spray coating method includes positioning a covering on a cooling channel of a component, and thermal spraying a feedstock onto the covering. The covering prohibits the feedstock from entering the cooling channel in the component and is not removed from the component. In another embodiment, the thermal spray coating method includes providing a component comprising a substrate material, providing a cooling channel on a surface of the component, positioning a covering on the cooling channel, and thermal spraying a feedstock onto the component and the covering, the feedstock comprising a bond coat material. The covering prohibits the bond coat material from entering the cooling channel. The thermal spray coated article includes a component, a cooling channel, a covering on the cooling channel, and a thermally sprayed coating on the component and the covering.
    Type: Application
    Filed: August 29, 2013
    Publication date: March 5, 2015
    Applicant: GENERAL ELECTRIC COMPANY
    Inventor: Jon Conrad SCHAEFFER
  • Publication number: 20150064451
    Abstract: A coating method, coated article and coating are provided. The coated article includes a low temperature component, and a graphene coating formed from a graphene derivative applied over the low temperature component. The coating method includes providing a graphene derivative, providing a low temperature component, applying the graphene derivative over the low temperature component, and forming a graphene coating. The graphene coating reduces corrosion and fouling of the low temperature component. The coating includes a graphene derivative, and modified functional groups on the graphene derivative. The modified functional groups increase adherence of the coating on application to a low temperature component.
    Type: Application
    Filed: August 29, 2013
    Publication date: March 5, 2015
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Murali Krishna KALAGA, Arjun BHATTACHARYYA, Rebika Mayanglambam DEVI, Jon Conrad SCHAEFFER, Padmaja PARAKALA, Surinder Singh PABLA
  • Publication number: 20140335277
    Abstract: A method includes disposing a bond layer on a substrate; disposing a reinforcing layer on the bond layer, the reinforcing layer comprising hydrogen; and disposing a protective layer on the reinforcing layer, wherein the reinforcing layer reduces formation of thermally grown oxide generated at the bond layer.
    Type: Application
    Filed: July 23, 2014
    Publication date: November 13, 2014
    Inventors: Rupak Das, Jon Conrad Schaeffer
  • Publication number: 20140314618
    Abstract: A cast nickel-base superalloy that includes iron added substitutionally for nickel. The cast nickel base superalloy comprises, in weight percent about 1-6% iron, about 7.5-19.1% cobalt, about 7-22.5% chromium, about 1.2-6.2% aluminum, optionally up to about 5% titanium, optionally up to about 6.5% tantalum, optionally up to about 1% Nb, about 2-6% W, optionally up to about 3% Re, optionally up to about 4% Mo, about 0.05-0.18% C, optionally up to about 0.15% Hf, about 0.004-0.015 B, optionally up to about 0.1% Zr, and the balance Ni and incidental impurities. The superalloy is characterized by a ?? solvus temperature that is within 5% of the ?? solvus temperature of the superalloy that does not include 1-6% Fe and a mole fraction of ?? that is within 15% of the mole fraction of the superalloy that does not include 1-6% Fe.
    Type: Application
    Filed: April 23, 2013
    Publication date: October 23, 2014
    Inventors: Ganjiang FENG, Jon Conrad SCHAEFFER, Michael Douglas ARNETT
  • Publication number: 20140308479
    Abstract: A method for fabricating thermal barrier coatings. The thermal barrier coatings are produced with a fine grain size by reverse co-precipitation of fine powders. The powders are then sprayed by a solution plasma spray that partially melts the fine powders while producing a fine grain size with dense vertical cracking. The coatings comprise at least one of 45%-65% Yb2O3 the balance Zr, Yb/Y/Hf/Ta the balance Zr and 2.3-7.8% La, 1.4-5.1% Y and the balance Zr and are characterized by a thermal conductivity that is about 25-50% lower than that of thermal barrier coatings comprising YSZ. The thermal barrier coatings also are characterized by at least one of excellent erosion resistance, fracture toughness and abrasion resistance.
    Type: Application
    Filed: April 10, 2013
    Publication date: October 16, 2014
    Applicant: General Electronic Company
    Inventors: Padmaja PARAKALA, Surinder Singh PABLA, Joshua Lee MARGOLIES, James Anthony RUUD, Krishnamurthy ANAND, Jon Conrad SCHAEFFER
  • Patent number: 8857055
    Abstract: A process is provided for forming shaped air holes, such as for use in turbine blades. Aspects of the disclosure relate to forming shaped portions of air holes using a short pulse laser, forming a metered hole corresponding to each shaped portion, and separately finishing the shaped portion using a short-pulse laser. In other embodiments, the order of these operations may be varied, such as to form the shaped portions and to finish the shaped portions using the short-pulse laser prior to forming the corresponding metered holes.
    Type: Grant
    Filed: January 29, 2010
    Date of Patent: October 14, 2014
    Assignee: General Electric Company
    Inventors: Bin Wei, Jon Conrad Schaeffer, Ronald Scott Bunker, Wenwu Zhang, Kathleen Blanche Morey, Jane Marie Lipkin, Benjamin Paul Lacy, Wilbur Douglas Scheidt
  • Publication number: 20140272467
    Abstract: A process of forming a calcium-magnesium-aluminosilicate (CMAS) penetration resistant coating, and a CMAS penetration resistant coating are disclosed. The process includes providing a thermal barrier coating having a dopant, and exposing the thermal barrier coating to calcium-magnesium-aluminosilicate and gas turbine operating conditions. The exposing forming a calcium-magnesium-aluminosilicate penetration resistant layer. The coating includes a thermal barrier coating composition comprising a dopant selected from the group consisting of rare earth elements, non-rare earth element solutes, and combinations thereof. Additional or alternatively, the coating includes a thermal barrier coating and an impermeable barrier layer or a washable sacrificial layer positioned on an outer surface of the thermal barrier coating.
    Type: Application
    Filed: March 13, 2013
    Publication date: September 18, 2014
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Jon Conrad SCHAEFFER, Surinder Singh PABLA, Paul Stephen DIMASCIO, Krishnamurthy ANAND, Joshua Lee MARGOLIES, Padmaja PARAKALA
  • Patent number: 8663403
    Abstract: A precipitation-hardened stainless steel alloy comprises, by weight: about 14.0 to about 16.0 percent chromium; about 6.0 to about 8.0 percent nickel; about 1.25 to about 1.75 percent copper; greater than about 1.5 to about 2.0 percent molybdenum; about 0.001 to about 0.025 percent carbon; niobium in an amount greater than about twenty times that of carbon; and the balance iron and incidental impurities. The alloy has an aged microstructure and an ultimate tensile strength of at least about 1100 MPa and a Charpy V-notch toughness of at least about 69 J. In one embodiment, the aged microstructure includes martensite and not more than about 10% reverted austenite. In another embodiment, the alloy includes substantially all martensite and substantially no reverted austenite. The alloy is useful for making turbine airfoils.
    Type: Grant
    Filed: June 8, 2011
    Date of Patent: March 4, 2014
    Assignee: General Electric Company
    Inventors: Jianqiang Chen, Thomas Michael Moors, Jon Conrad Schaeffer
  • Publication number: 20140042128
    Abstract: An electric discharge machining process, an article for electric discharge machining, and an electrically-conductive electric discharge machining coolant are disclosed. The electric discharge machining process includes electric discharge machining a target region of a component. The article includes a non-electrically-conductive layer, an electrically-conductive layer, and a target region on the non-electrically-conductive layer. The electrically-conductive electric discharge machining coolant includes a hydrocarbon liquid and carbon powder suspended within the hydrocarbon liquid.
    Type: Application
    Filed: August 8, 2012
    Publication date: February 13, 2014
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Ganjiang FENG, Jon Conrad SCHAEFFER, Michael Douglas ARNETT, Shan LIU
  • Publication number: 20140037970
    Abstract: An article comprising a substrate; a bond layer disposed on the substrate; a reinforcing layer disposed on the bond layer, the reinforcing layer comprising hydrogen; and a protective layer disposed on the reinforcing layer, wherein the reinforcing layer reduces formation of thermally grown oxide generated at the bond layer, and methods of making the same.
    Type: Application
    Filed: August 3, 2012
    Publication date: February 6, 2014
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Rupak Das, Jon Conrad Schaeffer
  • Publication number: 20140011038
    Abstract: A system or method for applying a protective environmental coating for a gas turbine component. The coating includes a bond layer applied to a substrate comprised of a ceramic matrix composite material and environmental barrier coating layers. The first environmental barrier coating layer is bonded to the substrate by the bond layer. The bond layer comprises silicon and particles consisting of particles of Lanthanum or Cerium.
    Type: Application
    Filed: July 5, 2012
    Publication date: January 9, 2014
    Applicant: GENERAL ELECTRIC COMPANY
    Inventors: Rupak DAS, Jon Conrad SCHAEFFER, James ZHANG