Patents by Inventor Jon D. Schell

Jon D. Schell has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10828494
    Abstract: An implantable medical device comprising a signal generator configured to generate and deliver anti-tachyarrhythmia pacing (ATP) to a heart of a patient and processing circuitry. The processing circuitry is configured to detect an enable event, responsive to detecting the enable event, enable the delivery of ATP by the signal generator, detect a disable event indicating that another implantable medical device cannot be relied upon to deliver an anti-tachyarrhythmia shock, and responsive to detecting the disable event, disable delivery of ATP.
    Type: Grant
    Filed: November 15, 2017
    Date of Patent: November 10, 2020
    Assignee: Medtronic, Inc.
    Inventors: Scott A. Hareland, James K. Carney, James D. Reinke, Jon D. Schell, Barbara J. Schmid
  • Patent number: 10722717
    Abstract: In some examples, an implantable medical device determines that another medical device delivered an anti-tachyarrhythmia shock, and delivers post-shock pacing in response to the determination. The implantable medical device may be configured to both detect the delivery of the shock in a sensed electrical signal and, if delivery of the shock is not detected, determine that the shock was delivered based on detection of asystole of the heart. The asystole may be detected based on the sensed electrical signal. In some examples, an implantable medical device is configured to revert from a post-shock pacing mode to a baseline pacing mode by iteratively testing a plurality of decreasing values of pacing pulse magnitude until loss of capture is detected. The implantable medical device may update a baseline value of the pacing pulse magnitude for the baseline mode based on the detection of loss of capture.
    Type: Grant
    Filed: March 2, 2018
    Date of Patent: July 28, 2020
    Assignee: Medtronic, Inc.
    Inventors: Scott A. Hareland, James D. Reinke, Jon D. Schell
  • Patent number: 10485435
    Abstract: In one example, this disclosure is directed to a kit for intravascular implantation of an implantable medical device, the kit comprising an outer sheath, the outer sheath sized to traverse a vasculature of the patient, and an elongated inner sheath with a tapered distal end. The inner sheath is slidable within the inner lumen of the outer sheath and is selectably removable from the inner lumen of the outer sheath by sliding the inner sheath out of the proximal opening of the outer sheath. The kit includes an elongated deployment receptacle including a deployment bay slidable within the inner lumen of the outer sheath when the inner sheath is not within the inner lumen of the outer sheath. The deployment bay carries an implantable medical device through the inner lumen of the outer sheath and facilitates deployment of the implantable medical device from the distal end of the outer sheath.
    Type: Grant
    Filed: May 29, 2012
    Date of Patent: November 26, 2019
    Assignee: Medtronic, Inc.
    Inventors: Erik C. Griswold, James Calvin Allan, Rudolph A. Beasley, William J. Havel, Jon D. Schell, Don H. Tran, Steven L. Waldhauser
  • Patent number: 10426555
    Abstract: A medical instrument includes a printed sensor, a surface, at least one non-conductive material, and at least one pair of contacts. The sensor has at least one coil formed on a conductive material. The surface is suitable for receiving the printed sensor and can be placed in an EM field. The at least one non-conductive material covers the at least one coil of the sensor. The medical instrument contains multiple conductive and nonconductive layers. The at least one pair of contacts are electrically connected to the at least one coil and connectable to the conductive layer, the conductive layer coupled to a measurement device, which senses an induced electrical signal based on a magnetic flux change of the EM field. The location of the medical instrument in a coordinate system of the EM filed is identified based on the induced electrical signal in the sensor.
    Type: Grant
    Filed: May 5, 2016
    Date of Patent: October 1, 2019
    Assignee: COVIDIEN LP
    Inventors: Thomas P. Crowley, David J. Miel, David J. Serdar, Joshua B. Stopek, David M. Costello, Lev A. Koyrakh, Keith E. Jasperson, Jon D. Schell
  • Patent number: 10232182
    Abstract: In some examples, an implantable medical device determines that another medical device delivered an anti-tachyarrhythmia shock, and delivers post-shock pacing in response to the determination. The implantable medical device may be configured to both detect the delivery of the shock in a sensed electrical signal and, if delivery of the shock is not detected, determine that the shock was delivered based on detection of asystole of the heart. The asystole may be detected based on the sensed electrical signal. In some examples, an implantable medical device is configured to revert from a post-shock pacing mode to a baseline pacing mode by iteratively testing a plurality of decreasing values of pacing pulse magnitude until loss of capture is detected. The implantable medical device may update a baseline value of the pacing pulse magnitude for the baseline mode based on the detection of loss of capture.
    Type: Grant
    Filed: April 28, 2016
    Date of Patent: March 19, 2019
    Assignee: Medtronic, Inc.
    Inventors: Scott A. Hareland, James D. Reinke, Jon D. Schell
  • Publication number: 20180185640
    Abstract: In some examples, an implantable medical device determines that another medical device delivered an anti-tachyarrhythmia shock, and delivers post-shock pacing in response to the determination. The implantable medical device may be configured to both detect the delivery of the shock in a sensed electrical signal and, if delivery of the shock is not detected, determine that the shock was delivered based on detection of asystole of the heart. The asystole may be detected based on the sensed electrical signal. In some examples, an implantable medical device is configured to revert from a post-shock pacing mode to a baseline pacing mode by iteratively testing a plurality of decreasing values of pacing pulse magnitude until loss of capture is detected. The implantable medical device may update a baseline value of the pacing pulse magnitude for the baseline mode based on the detection of loss of capture.
    Type: Application
    Filed: March 2, 2018
    Publication date: July 5, 2018
    Inventors: Scott A. HARELAND, James D. REINKE, Jon D. SCHELL
  • Publication number: 20180085579
    Abstract: An implantable medical device comprising a signal generator configured to generate and deliver anti-tachyarrhythmia pacing (ATP) to a heart of a patient and processing circuitry. The processing circuitry is configured to detect an enable event, responsive to detecting the enable event, enable the delivery of ATP by the signal generator, detect a disable event indicating that another implantable medical device cannot be relied upon to deliver an anti-tachyarrhythmia shock, and responsive to detecting the disable event, disable delivery of ATP.
    Type: Application
    Filed: November 15, 2017
    Publication date: March 29, 2018
    Inventors: Scott A. HARELAND, James K. CARNEY, James D. REINKE, Jon D. SCHELL, Barbara J. SCHMID
  • Patent number: 9854982
    Abstract: In one example, this disclosure is directed to a method for intravascular implantation of an implantable medical device comprising positioning a distal end of an elongated outer sheath forming an inner lumen adjacent a target site within a vasculature of a patient, and partially deploying an implantable medical device from the distal opening, wherein the implantable medical device includes an expandable fixation element. A portion of the expandable fixation element assumes an expanded position when the implantable medical device is partially deployed from the distal opening. The method including advancing the distal end of the outer sheath within the vasculature with the implantable medical device partially deployed from the distal opening, and monitoring at least one of the vasculature and the portion of the expandable fixation element for deflection to determine when the size of the portion of the expandable fixation element corresponds to the size of the vasculature.
    Type: Grant
    Filed: May 29, 2012
    Date of Patent: January 2, 2018
    Assignee: Medtronic, Inc.
    Inventors: James Calvin Allan, Erik C. Griswold, William J. Havel, Steven L. Waldhauser, Kelly M. Wien, Kendra Yasger, Rudolph A. Beasley, Jon D. Schell, Don H. Tran
  • Patent number: 9844675
    Abstract: An implantable medical device comprising a signal generator configured to generate and deliver anti-tachyarrhythmia pacing (ATP) to a heart of a patient and processing circuitry. The processing circuitry is configured to detect an enable event, responsive to detecting the enable event, enable the delivery of ATP by the signal generator, detect a disable event indicating that another implantable medical device cannot be relied upon to deliver an anti-tachyarrhythmia shock, and responsive to detecting the disable event, disable delivery of ATP.
    Type: Grant
    Filed: April 29, 2016
    Date of Patent: December 19, 2017
    Assignee: Medtronic, Inc.
    Inventors: Scott A. Hareland, James K. Carney, James D. Reinke, Jon D. Schell, Barbara J. Schmid
  • Publication number: 20170312514
    Abstract: An implantable medical device comprising a signal generator configured to generate and deliver anti-tachyarrhythmia pacing (ATP) to a heart of a patient and processing circuitry. The processing circuitry is configured to detect an enable event, responsive to detecting the enable event, enable the delivery of ATP by the signal generator, detect a disable event indicating that another implantable medical device cannot be relied upon to deliver an anti-tachyarrhythmia shock, and responsive to detecting the disable event, disable delivery of ATP.
    Type: Application
    Filed: April 29, 2016
    Publication date: November 2, 2017
    Inventors: Scott A. Hareland, James K. Carney, James D. Reinke, Jon D. Schell, Barbara J. Schmid
  • Publication number: 20170312510
    Abstract: In some examples, an implantable medical device determines that another medical device delivered an anti-tachyarrhythmia shock, and delivers post-shock pacing in response to the determination. The implantable medical device may be configured to both detect the delivery of the shock in a sensed electrical signal and, if delivery of the shock is not detected, determine that the shock was delivered based on detection of asystole of the heart. The asystole may be detected based on the sensed electrical signal. In some examples, an implantable medical device is configured to revert from a post-shock pacing mode to a baseline pacing mode by iteratively testing a plurality of decreasing values of pacing pulse magnitude until loss of capture is detected. The implantable medical device may update a baseline value of the pacing pulse magnitude for the baseline mode based on the detection of loss of capture.
    Type: Application
    Filed: April 28, 2016
    Publication date: November 2, 2017
    Inventors: Scott A. Hareland, James D. Reinke, Jon D. Schell
  • Publication number: 20170136241
    Abstract: Various techniques are disclosed for facilitating selection of at least one vector from among a plurality of vectors for pacing a chamber of a heart. In one example, a method includes presenting, by a computing device, a plurality of criteria by which each of the plurality of vectors may be prioritized, selecting at least one criterion from among a plurality of criteria by which each of the plurality of vectors may be prioritized, measuring the at least one selected criterion for each of the plurality of vectors, and automatically prioritizing, by the computing device, the plurality of vectors based on the measurement of the at least one selected criterion.
    Type: Application
    Filed: November 22, 2016
    Publication date: May 18, 2017
    Inventors: Elizabeth A Schotzko, Jon D Schell
  • Patent number: 9517032
    Abstract: An implantable sensor module and medical device includes a housing having an inner shell having a thickness extending between an inner wall and an outer wall and an outer layer, wherein the inner shell and the outer layer form a substantially flat portion. A shoulder extends adjacent to a diaphragm to extend the outer layer laterally away from a central medial line extending between edges of the diaphragm. A recess portion is formed between the diaphragm and an inner side of the outer layer, and an over-fill channel is formed by the outer layer extending through the outer layer from an opening formed at the outer wall to an opening formed along the inner side of the outer layer extending along the substantially flat portion.
    Type: Grant
    Filed: January 31, 2012
    Date of Patent: December 13, 2016
    Assignee: Medtronic, Inc.
    Inventors: Daniel S. Flo, James K. Carney, Kamal Deep Mothilal, Jon D. Schell
  • Publication number: 20160354160
    Abstract: A medical instrument includes a printed sensor, a surface, at least one non-conductive material, and at least one pair of contacts. The sensor has at least one coil formed on a conductive material. The surface is suitable for receiving the printed sensor and can be placed in an EM field. The at least one non-conductive material covers the at least one coil of the sensor. The medical instrument contains multiple conductive and nonconductive layers. The at least one pair of contacts are electrically connected to the at least one coil and connectable to the conductive layer, the conductive layer coupled to a measurement device, which senses an induced electrical signal based on a magnetic flux change of the EM field. The location of the medical instrument in a coordinate system of the EM filed is identified based on the induced electrical signal in the sensor.
    Type: Application
    Filed: May 5, 2016
    Publication date: December 8, 2016
    Inventors: THOMAS P. CROWLEY, DAVID J. MIEL, DAVID J. SERDAR, JOSHUA B. STOPEK, DAVID M. COSTELLO, LEV A. KOYRAKH, KEITH E. JASPERSON, JON D. SCHELL
  • Patent number: 9333341
    Abstract: An implantable lead for placement by means of a guide wire passing therethrough. The lead has an elongated insulative lead body with an axially extending lumen through at least a distal portion of the lead body. A conductor is mounted within and extends to an electrode assembly mounted to a distal portion of the lead body. A seal housing with a seal located therein located at a distal end of the lead body. The seal is located generally perpendicular to the axis of the lead body and is concave on both its proximal and distal sides. The housing is provided with a cavity adjacent each of the seal's proximal and distal sides, into which the seal may be deflected. The electrode assembly may be mounted to the seal housing.
    Type: Grant
    Filed: September 30, 2009
    Date of Patent: May 10, 2016
    Assignee: Medtronic, Inc.
    Inventors: John Louis Sommer, Jon D. Schell
  • Patent number: 9131858
    Abstract: An implantable sensor module includes a housing having an inner shell and an outer layer formed to extend over and enclose the inner shell to form an outer wall of the housing, the inner shell having a thickness extending between an inner wall of the inner shell and an outer wall of the inner shell, the outer layer having an inner side engaged against the outer wall of the inner shell and having a thickness extending between the inner side and the outer wall of the housing, wherein the inner shell and the outer layer form a substantially flat portion. A flexible diaphragm is formed within the inner shell and extends between a first edge and a second edge, and a shoulder extends adjacent to the first edge to extend the outer layer laterally away from a central medial line extending between the first and second edges of the diaphragm.
    Type: Grant
    Filed: January 31, 2012
    Date of Patent: September 15, 2015
    Assignee: Medtronic, Inc.
    Inventors: Daniel S. Flo, James K. Carney, Kamal Deep Mothilal, Jon D. Schell
  • Patent number: 9005134
    Abstract: An implantable medical device having a flexible diaphragm is provided with a housing including a shell and an outer layer. The flexible diaphragm extends along the shell. The outer layer has an outer surface and an inner surface. An adhesive coating is applied between the diaphragm and the inner surface of the outer layer. The outer layer includes a recess along the diaphragm for receiving the adhesive.
    Type: Grant
    Filed: January 31, 2012
    Date of Patent: April 14, 2015
    Assignee: Medtronic, Inc.
    Inventors: Daniel S. Flo, James K. Carney, Kamal Deep Mothilal, Jon D. Schell
  • Publication number: 20130253309
    Abstract: In one example, this disclosure is directed to a method for intravascular implantation of an implantable medical device comprising positioning a distal end of an elongated outer sheath forming an inner lumen adjacent a target site within a vasculature of a patient, and partially deploying an implantable medical device from the distal opening, wherein the implantable medical device includes an expandable fixation element. A portion of the expandable fixation element assumes an expanded position when the implantable medical device is partially deployed from the distal opening. The method including advancing the distal end of the outer sheath within the vasculature with the implantable medical device partially deployed from the distal opening, and monitoring at least one of the vasculature and the portion of the expandable fixation element for deflection to determine when the size of the portion of the expandable fixation element corresponds to the size of the vasculature.
    Type: Application
    Filed: May 29, 2012
    Publication date: September 26, 2013
    Applicant: MEDTRONIC, INC.
    Inventors: James Calvin Allan, Erik C. Griswold, William J. Havel, Steven L. Waldhauser, Kelly M. Wien, Kendra Yasger, Rudolph A. Beasley, Jon D. Schell, Don H. Tran
  • Publication number: 20130253346
    Abstract: In one example, this disclosure is directed to a kit for intravascular implantation of an implantable medical device, the kit comprising an outer sheath, the outer sheath sized to traverse a vasculature of the patient, and an elongated inner sheath with a tapered distal end. The inner sheath is slidable within the inner lumen of the outer sheath and is selectably removable from the inner lumen of the outer sheath by sliding the inner sheath out of the proximal opening of the outer sheath. The kit includes an elongated deployment receptacle including a deployment bay slidable within the inner lumen of the outer sheath when the inner sheath is not within the inner lumen of the outer sheath. The deployment bay carries an implantable medical device through the inner lumen of the outer sheath and facilitates deployment of the implantable medical device from the distal end of the outer sheath.
    Type: Application
    Filed: May 29, 2012
    Publication date: September 26, 2013
    Applicant: MEDTRONIC, INC.
    Inventors: Erik C. Griswold, James Calvin Allan, Rudolph A. Beasley, William J. Havel, Jon D. Schell, Don H. Tran, Steven L. Waldhauser
  • Publication number: 20130197396
    Abstract: An implantable medical device having a flexible diaphragm is provided with a housing including a shell and an outer layer. The flexible diaphragm extends along the shell. The outer layer has an outer surface and an inner surface. An adhesive coating is applied between the diaphragm and the inner surface of the outer layer. The outer layer includes a recess along the diaphragm for receiving the adhesive.
    Type: Application
    Filed: January 31, 2012
    Publication date: August 1, 2013
    Inventors: Daniel S. Flo, James K. Carney, Kamal Deep Mothilal, Jon D. Schell