Patents by Inventor Jon Edward Ness

Jon Edward Ness has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11041159
    Abstract: The present disclosure provides nucleic acids and vectors for use with methanotrophic bacteria. Related host cells and methods for using such nucleic acids and vectors for expressing polypeptides or other genetic manipulation of methanotrophic bacteria are also provided.
    Type: Grant
    Filed: August 28, 2019
    Date of Patent: June 22, 2021
    Assignee: Calysta, Inc.
    Inventors: Renee M. Saville, Joshua Silverman, Jeremy Minshull, Jon Edward Ness, Effendi Leonard, Jana Stumpe, Mark Welch
  • Publication number: 20200063146
    Abstract: The present disclosure provides nucleic acids and vectors for use with methanotrophic bacteria. Related host cells and methods for using such nucleic acids and vectors for expressing polypeptides or other genetic manipulation of methanotrophic bacteria are also provided.
    Type: Application
    Filed: August 28, 2019
    Publication date: February 27, 2020
    Inventors: Renee M. Saville, Joshua Silverman, Jeremy Minshull, Jon Edward Ness, Effendi Leonard, Jana Stumpe, Mark Welch
  • Patent number: 10443060
    Abstract: The present disclosure provides nucleic acids and vectors for use with methanotrophic bacteria. Related host cells and methods for using such nucleic acids and vectors for expressing polypeptides or other genetic manipulation of methanotrophic bacteria are also provided. In one aspect, the present disclosure is directed to a non-naturally occurring nucleic acid molecule, comprising (1) a promoter that is functional in a methanotrophic bacterium, and (2) a native or altered methanol dehydrogenase (MDH) ribosomal binding sequence, provided that when the promoter is an MDH gene promoter, the nucleic acid comprises an altered MDH ribosomal binding sequence.
    Type: Grant
    Filed: June 18, 2015
    Date of Patent: October 15, 2019
    Assignee: CALYSTA, INC.
    Inventors: Renee M. Saville, Joshua Silverman, Jeremy Minshull, Jon Edward Ness, Effendi Leonard, Jana Stumpe, Mark Welch
  • Patent number: 9657317
    Abstract: Provided herein is an alkane-metabolizing cell that is unable to convert propionyl-CoA into methylmalonyl-CoA or 2-metylcitrate synthase. Depending on which enzymes are present in the cell, the cell can produce acrylate or a precursor for the same (e.g., propionate, 3-hydroxypropionyl-CoA, 3-hydroxypropionate, acrylyl-CoA) that can be readily converted to acrylate enzymatically (e.g., in the cell) or by chemical treatment. In one embodiment, the cell may contain a cytochrome P450 or alkane oxidase enzyme that allows the production of 3-hydroxypropionyl-CoA, which can be readily converted to 3-hydroxypropionate. In order to make such compounds, the cell may be grown in the presence of an odd-numbered chain alkane (e.g., pentane or heptane), although another odd-numbered chain alkane may be used. In another embodiment, the cell may contain acyl-CoA oxidase, enoyl-CoA hydratase, and hydrolase.
    Type: Grant
    Filed: October 17, 2012
    Date of Patent: May 23, 2017
    Assignee: Calysta, Inc.
    Inventors: Joshua A. Silverman, Tom Purcell, Jon Edward Ness, Effendi Leonard
  • Publication number: 20170121718
    Abstract: The present disclosure provides nucleic acids and vectors for use with methanotrophic bacteria. Related host cells and methods for using such nucleic acids and vectors for expressing polypeptides or other genetic manipulation of methanotrophic bacteria are also provided. In one aspect, the present disclosure is directed to a non-naturally occurring nucleic acid molecule, comprising (1) a promoter that is functional in a methanotrophic bacterium, and (2) a native or altered methanol dehydrogenase (MDH) ribosomal binding sequence, provided that when the promoter is an MDH gene promoter, the nucleic acid comprises an altered MDH ribosomal binding sequence.
    Type: Application
    Filed: June 18, 2015
    Publication date: May 4, 2017
    Inventors: Renee M. Saville, Joshua Silverman, Jeremy Minshull, Jon Edward Ness, Effendi Leonard, Jana Stumpe, Mark Welch
  • Publication number: 20160017374
    Abstract: The present disclosure provides compositions and methods for biologically producing isoprene using methanotrophic bacteria that utilize carbon feedstock, such as methane or natural gas.
    Type: Application
    Filed: March 6, 2014
    Publication date: January 21, 2016
    Inventors: Effendi Leonard, Jeremy Minshull, Jon Edward Ness, Thomas Joseph Purcell
  • Publication number: 20150087036
    Abstract: Provided herein is an alkane-metabolizing cell that is unable to convert propionyl-CoA into methylmalonyl-CoA or 2-metylcitrate synthase. Depending on which enzymes are present in the cell, the cell can produce acrylate or a precursor for the same (e.g., propionate, 3-hydroxypropionyl-CoA, 3-hydroxypropionate, acrylyl-CoA) that can be readily converted to acrylate enzymatically (e.g., in the cell) or by chemical treatment. In one embodiment, the cell may contain a cytochrome P450 or alkane oxidase enzyme that allows the production of 3-hydroxypropionyl-CoA, which can be readily converted to 3-hydroxypropionate. In order to make such compounds, the cell may be grown in the presence of an odd-numbered chain alkane (e.g., pentane or heptane), although another odd-numbered chain alkane may be used. In another embodiment, the cell may contain acyl-CoA oxidase, enoyl-CoA hydratase, and hydrolase.
    Type: Application
    Filed: October 17, 2012
    Publication date: March 26, 2015
    Inventors: Joshua A. Silverman, Tom Purcell, Jon Edward Ness, Effendi Leonard