Patents by Inventor Jon F. Edd

Jon F. Edd has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230033651
    Abstract: Systems, methods, and techniques are disclosed herein for isolating rare cells and clusters of cells, such as CTCs, from large volumes of sample fluids, such as whole blood, diluted blood, e g, minimally diluted blood, and other samples such as leukapheresis and aphaeresis samples. In some implementations, a microfluidic device includes a particle enrichment module and a particle separation module for iterative multistage sorting. Each module can have an array of islands in a microfluidic channel having a sample inlet at a first end of the first microfluidic channel. The array of islands is arranged in one or more rows that extend along a longitudinal direction in the microfluidic channel. Each island in a row is spaced apart from an adjacent island in the row to form a siphoning channel. The array of islands is configured and arranged to shift portions of fluid through the siphoning channel between adjacent islands.
    Type: Application
    Filed: January 8, 2021
    Publication date: February 2, 2023
    Inventors: Mehmet Toner, Avanish Mishra, Jon F. Edd
  • Patent number: 11498071
    Abstract: Various systems, methods, and devices are provided for focusing particles suspended within a moving fluid into one or more localized stream lines. The system can include a substrate and at least one channel provided on the substrate having an inlet and an outlet. The system can further include a fluid moving along the channel in a laminar flow having suspended particles and a pumping element driving the laminar flow of the fluid. The fluid, the channel, and the pumping element can be configured to cause inertial forces to act on the particles and to focus the particles into one or more stream lines.
    Type: Grant
    Filed: December 20, 2019
    Date of Patent: November 15, 2022
    Assignee: The General Hospital Corporation
    Inventors: Mehmet Toner, Dino DiCarlo, Jon F. Edd, Daniel Irimia
  • Patent number: 11474023
    Abstract: This disclosure provides systems and methods to extend the capabilities of inertial and/or viscoelastic focusing in channels, such as microchannels. The new systems and methods can be integrated with existing microfluidic devices for inertial and/or viscoelastic manipulation of particles that have defied prior attempts, enabling a variety of applications in clinical diagnosis. The particles, e.g., bioparticles and cells, focus into streamlines in the same way and in the same locations as in existing inertial and viscoelastic focusing systems, but at much lower particle Reynolds numbers, much lower shear stress, over much shorter distances, and at lower driving pressures and/or flow rates.
    Type: Grant
    Filed: June 4, 2018
    Date of Patent: October 18, 2022
    Assignee: The General Hospital Corporation
    Inventors: Baris R. Mutlu, Jon F. Edd, Mehmet Toner
  • Publication number: 20220074932
    Abstract: Methods of using particle size amplification to facilitate size-based particle separation and concentration. At least one of the methods includes introducing a plurality of binding moieties into a fluid sample; allowing at least one of the binding moieties to bind two or more biological particles to form a particle cluster, in which the particle cluster comprises a first type of biological particle bound to a second different type of biological particle; and flowing the fluid sample comprising the particle cluster into a particle sorting region of a microfluidic device.
    Type: Application
    Filed: December 26, 2019
    Publication date: March 10, 2022
    Inventors: Jon F. Edd, Kaja Kaastrup, Ravi Kapur, Mehmet Toner
  • Patent number: 10941393
    Abstract: Microfluidic devices and methods for the encapsulation of particles within liquid droplets are disclosed. The new methods and devices form 1-100 picoliter-size monodisperse droplets containing the particles, such as single cells, encapsulated in individual liquid droplets. The particles can be encapsulated in droplets of a fluid by passing a fluid containing the particles through a high aspect-ratio microchannel to order the particles in the fluid, followed by forming the fluid into droplets. The resulting fraction of the liquid droplets with a single particle (e.g., a cell) is higher than the corresponding fraction of single-particle liquid droplets predicted by Poisson statistics.
    Type: Grant
    Filed: January 4, 2019
    Date of Patent: March 9, 2021
    Assignee: The General Hospital Corporation
    Inventors: Jon F. Edd, Mehmet Toner, Dino DiCarlo, Daniel Irimia
  • Publication number: 20210055202
    Abstract: This disclosure provides systems and methods to extend the capabilities of inertial and/or viscoelastic focusing in channels, such as microchannels. The new systems and methods can be integrated with existing microfluidic devices for inertial and/or viscoelastic manipulation of particles that have defied prior attempts, enabling a variety of applications in clinical diagnosis. The particles, e.g., bioparticles and cells, focus into streamlines in the same way and in the same locations as in existing inertial and viscoelastic focusing systems, but at much lower particle Reynolds numbers, much lower shear stress, over much shorter distances, and at lower driving pressures and/or flow rates.
    Type: Application
    Filed: June 4, 2018
    Publication date: February 25, 2021
    Inventors: Baris R. Mutlu, Jon F. Edd, Mehmet Toner
  • Publication number: 20200139372
    Abstract: Various systems, methods, and devices are provided for focusing particles suspended within a moving fluid into one or more localized stream lines. The system can include a substrate and at least one channel provided on the substrate having an inlet and an outlet. The system can further include a fluid moving along the channel in a laminar flow having suspended particles and a pumping element driving the laminar flow of the fluid. The fluid, the channel, and the pumping element can be configured to cause inertial forces to act on the particles and to focus the particles into one or more stream lines.
    Type: Application
    Filed: December 20, 2019
    Publication date: May 7, 2020
    Inventors: Mehmet Toner, Dino DiCarlo, Jon F. Edd, Daniel Irimia
  • Patent number: 10549278
    Abstract: Various systems, methods, and devices are provided for focusing particles suspended within a moving fluid into one or more localized stream lines. The system can include a substrate and at least one channel provided on the substrate having an inlet and an outlet. The system can further include a fluid moving along the channel in a laminar flow having suspended particles and a pumping element driving the laminar flow of the fluid. The fluid, the channel, and the pumping element can be configured to cause inertial forces to act on the particles and to focus the particles into one or more stream lines.
    Type: Grant
    Filed: July 30, 2018
    Date of Patent: February 4, 2020
    Assignee: The General Hospital Corporation
    Inventors: Mehmet Toner, Dino DiCarlo, Jon F. Edd, Daniel Irimia
  • Publication number: 20190276814
    Abstract: Microfluidic devices and methods for the encapsulation of particles within liquid droplets are disclosed. The new methods and devices form 1-100 picoliter-size monodisperse droplets containing the particles, such as single cells, encapsulated in individual liquid droplets. The particles can be encapsulated in droplets of a fluid by passing a fluid containing the particles through a high aspect-ratio microchannel to order the particles in the fluid, followed by forming the fluid into droplets. The resulting fraction of the liquid droplets with a single particle (e.g., a cell) is higher than the corresponding fraction of single-particle liquid droplets predicted by Poisson statistics.
    Type: Application
    Filed: January 4, 2019
    Publication date: September 12, 2019
    Inventors: Jon F. Edd, Mehmet Toner, Dino DiCarlo, Daniel Irimia
  • Publication number: 20190160465
    Abstract: Various systems, methods, and devices are provided for focusing particles suspended within a moving fluid into one or more localized stream lines. The system can include a substrate and at least one channel provided on the substrate having an inlet and an outlet. The system can further include a fluid moving along the channel in a laminar flow having suspended particles and a pumping element driving the laminar flow of the fluid. The fluid, the channel, and the pumping element can be configured to cause inertial forces to act on the particles and to focus the particles into one or more stream lines.
    Type: Application
    Filed: July 30, 2018
    Publication date: May 30, 2019
    Inventors: Mehmet Toner, Dino DiCarlo, Jon F. Edd, Daniel Irimia
  • Patent number: 10174305
    Abstract: Microfluidic devices and methods for the encapsulation of particles within liquid droplets are disclosed. The new methods and devices form 1-100 picoliter-size monodisperse droplets containing the particles, such as single cells, encapsulated in individual liquid droplets. The particles can be encapsulated in droplets of a fluid by passing a fluid containing the particles through a high aspect-ratio microchannel to order the particles in the fluid, followed by forming the fluid into droplets. The resulting fraction of the liquid droplets with a single particle (e.g., a cell) is higher than the corresponding fraction of single-particle liquid droplets predicted by Poisson statistics.
    Type: Grant
    Filed: June 12, 2017
    Date of Patent: January 8, 2019
    Assignee: The General Hospital Corporation
    Inventors: Jon F. Edd, Mehmet Toner, Dino DiCarlo, Daniel Irimia
  • Publication number: 20180117593
    Abstract: Various systems, methods, and devices are provided for focusing particles suspended within a moving fluid into one or more localized stream lines. The system can include a substrate and at least one channel provided on the substrate having an inlet and an outlet. The system can further include a fluid moving along the channel in a laminar flow having suspended particles and a pumping element driving the laminar flow of the fluid. The fluid, the channel, and the pumping element can be configured to cause inertial forces to act on the particles and to focus the particles into one or more stream lines.
    Type: Application
    Filed: November 3, 2017
    Publication date: May 3, 2018
    Inventors: Mehmet Toner, Dino DiCarlo, Jon F. Edd, Daniel Irimia
  • Publication number: 20170342398
    Abstract: Microfluidic devices and methods for the encapsulation of particles within liquid droplets are disclosed. The new methods and devices form 1-100 picoliter-size monodisperse droplets containing the particles, such as single cells, encapsulated in individual liquid droplets. The particles can be encapsulated in droplets of a fluid by passing a fluid containing the particles through a high aspect-ratio microchannel to order the particles in the fluid, followed by forming the fluid into droplets. The resulting fraction of the liquid droplets with a single particle (e.g., a cell) is higher than the corresponding fraction of single-particle liquid droplets predicted by Poisson statistics.
    Type: Application
    Filed: June 12, 2017
    Publication date: November 30, 2017
    Inventors: Jon F. Edd, Mehmet Toner, Dino DiCarlo, Daniel Irimia
  • Patent number: 9808803
    Abstract: Various systems, methods, and devices are provided for focusing particles suspended within a moving fluid into one or more localized stream lines. The system can include a substrate and at least one channel provided on the substrate having an inlet and an outlet. The system can further include a fluid moving along the channel in a laminar flow having suspended particles and a pumping element driving the laminar flow of the fluid. The fluid, the channel, and the pumping element can be configured to cause inertial forces to act on the particles and to focus the particles into one or more stream lines.
    Type: Grant
    Filed: May 23, 2016
    Date of Patent: November 7, 2017
    Assignee: The General Hospital Corporation
    Inventors: Mehmet Toner, Dino DiCarlo, Jon F. Edd, Daniel Irimia
  • Patent number: 9677064
    Abstract: Microfluidic devices and methods for the encapsulation of particles within liquid droplets are disclosed. The new methods and devices form 1-100 picoliter-size monodisperse droplets containing the particles, such as single cells, encapsulated in individual liquid droplets. The particles can be encapsulated in droplets of a fluid by passing a fluid containing the particles through a high aspect-ratio microchannel to order the particles in the fluid, followed by forming the fluid into droplets. The resulting fraction of the liquid droplets with a single particle (e.g., a cell) is higher than the corresponding fraction of single-particle liquid droplets predicted by Poisson statistics.
    Type: Grant
    Filed: June 29, 2015
    Date of Patent: June 13, 2017
    Assignee: The General Hospital Corporation
    Inventors: Jon F Edd, Memhet Toner, Dino DiCarlo, Daniel Irimia
  • Publication number: 20170080425
    Abstract: Various systems, methods, and devices are provided for focusing particles suspended within a moving fluid into one or more localized stream lines. The system can include a substrate and at least one channel provided on the substrate having an inlet and an outlet. The system can further include a fluid moving along the channel in a laminar flow having suspended particles and a pumping element driving the laminar flow of the fluid. The fluid, the channel, and the pumping element can be configured to cause inertial forces to act on the particles and to focus the particles into one or more stream lines.
    Type: Application
    Filed: May 23, 2016
    Publication date: March 23, 2017
    Inventors: Mehmet Toner, Dino DiCarlo, Jon F. Edd, Daniel Irimia
  • Patent number: 9347595
    Abstract: Various systems, methods, and devices are provided for focusing particles suspended within a moving fluid into one or more localized stream lines. The system can include a substrate and at least one channel provided on the substrate having an inlet and an outlet. The system can further include a fluid moving along the channel in a laminar flow having suspended particles and a pumping element driving the laminar flow of the fluid. The fluid, the channel, and the pumping element can be configured to cause inertial forces to act on the particles and to focus the particles into one or more stream lines.
    Type: Grant
    Filed: July 21, 2014
    Date of Patent: May 24, 2016
    Assignee: The General Hospital Corporation
    Inventors: Mehmet Toner, Dino DiCarlo, Jon F. Edd, Daniel Irimia
  • Publication number: 20150361414
    Abstract: Microfluidic devices and methods for the encapsulation of particles within liquid droplets are disclosed. The new methods and devices form 1-100 picoliter-size monodisperse droplets containing the particles, such as single cells, encapsulated in individual liquid droplets. The particles can be encapsulated in droplets of a fluid by passing a fluid containing the particles through a high aspect-ratio microchannel to order the particles in the fluid, followed by forming the fluid into droplets. The resulting fraction of the liquid droplets with a single particle (e.g., a cell) is higher than the corresponding fraction of single-particle liquid droplets predicted by Poisson statistics.
    Type: Application
    Filed: June 29, 2015
    Publication date: December 17, 2015
    Inventors: Jon F. Edd, Memhet Toner, Dino DiCarlo, Daniel Irimia
  • Patent number: 9068181
    Abstract: Microfluidic devices and methods for the encapsulation of particles within liquid droplets are disclosed. The new methods and devices form 1-100 picoliter-size monodisperse droplets containing the particles, such as single cells, encapsulated in individual liquid droplets. The particles can be encapsulated in droplets of a fluid by passing a fluid containing the particles through a high aspect-ratio microchannel to order the particles in the fluid, followed by forming the fluid into droplets. The resulting fraction of the liquid droplets with a single particle (e.g., a cell) is higher than the corresponding fraction of single-particle liquid droplets predicted by Poisson statistics.
    Type: Grant
    Filed: May 26, 2009
    Date of Patent: June 30, 2015
    Assignee: The General Hospital Corporation
    Inventors: Jon F. Edd, Mehmet Toner, Dino Dicarlo, Daniel Irimia
  • Publication number: 20140326339
    Abstract: Various systems, methods, and devices are provided for focusing particles suspended within a moving fluid into one or more localized stream lines. The system can include a substrate and at least one channel provided on the substrate having an inlet and an outlet. The system can further include a fluid moving along the channel in a laminar flow having suspended particles and a pumping element driving the laminar flow of the fluid. The fluid, the channel, and the pumping element can be configured to cause inertial forces to act on the particles and to focus the particles into one or more stream lines.
    Type: Application
    Filed: July 21, 2014
    Publication date: November 6, 2014
    Inventors: Mehmet Toner, Dino DiCarlo, Jon F. Edd, Daniel Irimia