Patents by Inventor Jon F. Urban

Jon F. Urban has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20250011701
    Abstract: Apparatus and associated methods relate to cell culture systems having controlled gas concentration boundary conditions around cell culture. In an illustrative example, a programmable cell culture system (PCCS) may include one or more manifolds, each releasably coupled to multiple cell culture modules. The cell culture modules, for example, may include a nutrient capacitive medium (NCM) in fluid communication with a concentration-controlled gas source through at least two gas transfer interfaces. The gas transfer interfaces (GTIs) may, for example, be spatially distributed in relation to a cell growth surface in the NCM. Each GTI, for example, may include a gas permeable membrane (GPM) and a plenum. The GPM may be disposed between the plenum and the NCM. Various embodiments may advantageously selectively control a concentration of at least one target gas in the NCM by maintaining predetermined boundary conditions of the cell growth surface via the GTIs.
    Type: Application
    Filed: October 28, 2022
    Publication date: January 9, 2025
    Applicant: Nextern Innovation, LLC
    Inventors: Jon F. Urban, Riazul Islam, John Swoyer, Fernando Buarque, John D. Foley
  • Patent number: 9144685
    Abstract: An apparatus and method to discriminate cardiac events by sensing atrial and ventricular depolarizations having associated refractory periods thereafter. A fast ventricular rate is detected in response to the sensed ventricular depolarizations. Responsive to detecting the fast ventricular rate, at least one stimulus pulse is delivered to atrial tissue within the associated refractory period of the ventricle but outside of an associated refractory period of the stimulated atrial tissue. A ventricular response to the atrial tissue stimulus pulse is determined, and the cardiac event is discriminated based on the ventricular response to the atrial tissue stimulus pulse.
    Type: Grant
    Filed: January 25, 2012
    Date of Patent: September 29, 2015
    Assignee: Medtronic, Inc.
    Inventors: Yong-Fu Xiao, Jeffrey M. Gillberg, Paul J. DeGroot, Eduardo N. Warman, Scott J. Brabec, John L. Sommer, Jon F. Urban, Lepeng Zeng
  • Patent number: 8509893
    Abstract: Various techniques for delivering atrial pacing and supraventricular stimulation to achieve a desired ventricular rate and/or cardiac output are described. One example method described includes delivering a pacing signal configured to cause an atrial depolarization to a heart of a patient, wherein the atrial depolarization results in an associated refractory period during the cardiac cycle, and delivering a signal to a supraventricular portion of the heart of the patient subsequent to the atrial refractory period and during a ventricular refractory period of the cardiac cycle.
    Type: Grant
    Filed: October 27, 2010
    Date of Patent: August 13, 2013
    Assignee: Medtronic, Inc.
    Inventors: Yong-Fu Xiao, John L. Sommer, Scott J. Brabec, Lepeng Zeng, Jon F. Urban
  • Publication number: 20120232606
    Abstract: An apparatus and method to discriminate cardiac events by sensing atrial and ventricular depolarizations having associated refractory periods thereafter. A fast ventricular rate is detected in response to the sensed ventricular depolarizations. Responsive to detecting the fast ventricular rate, at least one stimulus pulse is delivered to atrial tissue within the associated refractory period of the ventricle but outside of an associated refractory period of the stimulated atrial tissue. A ventricular response to the atrial tissue stimulus pulse is determined, and the cardiac event is discriminated based on the ventricular response to the atrial tissue stimulus pulse.
    Type: Application
    Filed: January 25, 2012
    Publication date: September 13, 2012
    Inventors: Yong-Fu Xiao, Jeffrey M. Gillberg, Paul J. DeGroot, Eduardo N. Warman, Scott J. Brabec, John L. Sommer, Jon F. Urban, Lepeng Zeng
  • Publication number: 20120232605
    Abstract: An apparatus and method to discriminate cardiac events by sensing atrial and ventricular depolarizations having associated refractory periods thereafter. A fast ventricular rate is detected in response to the sensed ventricular depolarizations. Responsive to detecting the fast ventricular rate, at least one stimulus pulse is delivered to atrial tissue within the associated refractory period of the ventricle but outside of an associated refractory period of the stimulated atrial tissue. A ventricular response to the atrial tissue stimulus pulse is determined, and the cardiac event is discriminated based on the ventricular response to the atrial tissue stimulus pulse.
    Type: Application
    Filed: January 25, 2012
    Publication date: September 13, 2012
    Inventors: Yong-Fu Xiao, Jeffrey M. Gillberg, Paul J. DeGroot, Eduardo N. Warman, Scott J. Brabec, John L. Sommer, Jon F. Urban, Lepeng Zeng
  • Publication number: 20120109237
    Abstract: Various techniques for delivering atrial pacing and supraventricular stimulation to achieve a desired ventricular rate and/or cardiac output are described. One example method described includes delivering a pacing signal configured to cause an atrial depolarization to a heart of a patient, wherein the atrial depolarization results in an associated refractory period during the cardiac cycle, and delivering a signal to a supraventricular portion of the heart of the patient subsequent to the atrial refractory period and during a ventricular refractory period of the cardiac cycle.
    Type: Application
    Filed: October 27, 2010
    Publication date: May 3, 2012
    Applicant: MEDTRONIC, INC.
    Inventors: Yong-Fu Xiao, John L. Sommer, Scott J. Brabec, Lepeng Zeng, Jon F. Urban
  • Publication number: 20110190763
    Abstract: A system and associated method measure monophasic action potential signals for identifying a targeted tissue location and delivering a therapy to the targeted tissue location. The system includes a hollow needle having a sharpened distal tip, a first electrode at the distal tip and a fluid delivery lumen extending through the needle from a proximal needle end to an opening in the sharpened distal tip.
    Type: Application
    Filed: January 29, 2010
    Publication date: August 4, 2011
    Applicant: Medtronic, Inc.
    Inventors: Jon F. Urban, Vinod Sharma, Mark T. Stewart