Patents by Inventor Jon Holt

Jon Holt has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10215120
    Abstract: Methods and systems are provided for controlling a speed of a vehicle based on whether a rain tray is coupled within the vehicle, below a vented hood of the vehicle. In one example, a method may include maintaining a vehicle speed of a vehicle below a set vehicle speed threshold and alerting a vehicle operator of the set vehicle speed threshold when it is detected that a rain tray is installed in the vehicle, below a vent of a vented hood of the vehicle. In another example, the set vehicle speed threshold may be reduced due to the presence of rain.
    Type: Grant
    Filed: February 23, 2017
    Date of Patent: February 26, 2019
    Assignee: Ford Global Technologies, LLC
    Inventors: Matthew Arthur Titus, Jeff Grauer, Jon Holt, Thomas Joseph Ciccone, Mike Makled
  • Publication number: 20180238254
    Abstract: Methods and systems are provided for controlling a speed of a vehicle based on whether a rain tray is coupled within the vehicle, below a vented hood of the vehicle. In one example, a method may include maintaining a vehicle speed of a vehicle below a set vehicle speed threshold and alerting a vehicle operator of the set vehicle speed threshold when it is detected that a rain tray is installed in the vehicle, below a vent of a vented hood of the vehicle. In another example, the set vehicle speed threshold may be reduced due to the presence of rain.
    Type: Application
    Filed: February 23, 2017
    Publication date: August 23, 2018
    Inventors: Matthew Arthur Titus, Jeff Grauer, Jon Holt, Thomas Joseph Ciccone, Mike Makled
  • Patent number: 9238450
    Abstract: Exemplary methods and vehicles are disclosed. Exemplary methods may include determining that a vehicle is a fleet vehicle, establishing a presence of a configuration bit indicating the vehicle is a fleet vehicle, receiving an indication of a conclusion of a vehicle usage session as a fleet vehicle, and resetting a plurality of user-adjustable vehicle parameters to a default setting in response to the conclusion of the vehicle usage. Other exemplary methods may include installing a configuration bit into a vehicle, which indicates that the vehicle is a fleet vehicle, and providing a processor for the vehicle. The processor may be configured to reset a plurality of user-adjustable vehicle parameters to a default setting in response to the configuration bit and an indication of a conclusion of a vehicle usage associated with the vehicle.
    Type: Grant
    Filed: September 9, 2014
    Date of Patent: January 19, 2016
    Assignee: Ford Global Technologies, LLC
    Inventors: Robert Bruce Kleve, Thomas Lee Miller, Maria Eugenia Protopapas, Scott Alan Watkins, Eric L. Reed, Jon Holt, Brian Bennie
  • Publication number: 20090246970
    Abstract: The invention provides a method of fabricating a semiconductor device. In one aspect, the method comprises heating a gas mixture comprising chlorohydrocarbon having a general formula of CxHxClx, wherein x=2, 3, or 4, by passing it through a first chamber packed with surface area expanding members heated to a temperature to substantially dissociate the chlorohydrocarbon into chlorine and hydrocarbon. The dissociated chlorohydrocarbon is then passed, together with oxygen, into a second chamber heated to a lesser temperature to form an oxide film on a semiconductor substrate.
    Type: Application
    Filed: April 15, 2009
    Publication date: October 1, 2009
    Applicant: TEXAS INSTRUMENTS INCORPORATED
    Inventors: Jeff White, Jon Holt
  • Patent number: 7531464
    Abstract: The invention provides a method of fabricating a semiconductive device. In one aspect, the method comprises heating a gas mixture [225] comprising chlorohydrocarbon having a general formula of CxHxClx, wherein x=2, 3, or 4. The chlorohydrocarbon is heated in a first chamber 210 to a first temperature that substantially disassociates the chlorohydrocarbon. The substantially disassociated chlorohydrocarbon is used to form a film on a semiconductive substrate [235] that is located in a second chamber [215].
    Type: Grant
    Filed: December 20, 2005
    Date of Patent: May 12, 2009
    Assignee: Texas Instruments Incorporated
    Inventors: Jeff White, Jon Holt
  • Patent number: 7504339
    Abstract: A trench structure in a wafer of semiconductor material and the method of forming the trench structure are described. The trench structure is formed on a semiconductor wafer that has a top surface of slow oxidization rate—slower than that of other major crystallographic planes of the semiconductor material. The trench is etched into the semiconductor wafer. The trench has substantially vertical trench-sidewalls near the top surface, the vertical trench-sidewalls near the top surface containing crystallographic plane that oxidizes at a rate comparable to that of the top surface. An insulating layer is grown on the top surface and on the trench-sidewalls and on corners where sidewall surfaces approach the top surface, the insulating layer at the corners being substantially thicker than at the sidewall adjacent to the corners. The difference in the oxide thickness is due to the faster oxidizing planes exposed at the corners. Finally, the trench is filled with a dielectric material.
    Type: Grant
    Filed: June 1, 2005
    Date of Patent: March 17, 2009
    Assignee: Texas Instruments Incorporated
    Inventors: Zhihao Chen, Freidoon Mehrad, Brian K. Kirkpatrick, Jeff A. White, Edmund G. Russell, Jon Holt, Jason D. Mehigan
  • Publication number: 20070141853
    Abstract: The invention provides a method of fabricating a semiconductive device. In one aspect, the method comprises heating a gas mixture [225] comprising chlorohydrocarbon having a general formula of CxHxClx, wherein x=2, 3, or 4. The chlorohydrocarbon is heated in a first chamber 210 to a first temperature that substantially disassociates the chlorohydro-carbon. The substantially disassociated chlorohydrocarbon is used to form a film on a semiconductive substrate [235] that is located in a second chamber [215].
    Type: Application
    Filed: December 20, 2005
    Publication date: June 21, 2007
    Applicant: Texas Instruments Inc.
    Inventors: Jeff White, Jon Holt
  • Publication number: 20050208732
    Abstract: A trench structure in a wafer of semiconductor material and the method of forming the trench structure are described. The trench structure is formed on a semiconductor wafer that has a top surface of slow oxidization rate—slower than that of other major crystallographic planes of the semiconductor material. The trench is etched into the semiconductor wafer. The trench has substantially vertical trench-sidewalls near the top surface, the vertical trench-sidewalls near the top surface containing crystallographic plane that oxidizes at a rate comparable to that of the top surface. An insulating layer is grown on the top surface and on the trench-sidewalls and on corners where sidewall surfaces approach the top surface, the insulating layer at the corners being substantially thicker than at the sidewall adjacent to the corners. The difference in the oxide thickness is due to the faster oxidizing planes exposed at the corners. Finally, the trench is filled with a dielectric material.
    Type: Application
    Filed: June 1, 2005
    Publication date: September 22, 2005
    Inventors: Zhihao Chen, Freidoon Mehrad, Brian Kirkpatrick, Jeff White, Edmund Russell, Jon Holt, Jason Mehigan
  • Publication number: 20050156286
    Abstract: The present invention provides a method for improving a physical property of a substrate, a method for manufacturing an integrated circuit, and an integrated circuit manufactured using the aforementioned method. In one aspect of the invention, the method for improving a physical property of a substrate includes subjecting the substrate to effects of a plasma process 830, wherein the substrate has a physical property defect value associated therewith subsequent to the plasma process. The method further includes exposing the substrate to an ultraviolet (UV) energy source 840 to improve the physical property defect value.
    Type: Application
    Filed: January 18, 2005
    Publication date: July 21, 2005
    Inventors: Brian Kirkpatrick, Mercer Brugler, Eddie Breashears, Jon Holt, Corbett Zabierek, Rajesh Khamankar
  • Patent number: 6917093
    Abstract: A trench structure in a wafer of semiconductor material and the method of forming the trench structure are described. The trench structure is formed on a semiconductor wafer that has a top surface of slow oxidization rate—slower than that of other major crystallographic planes of the semiconductor material. The trench is etched into the semiconductor wafer. The trench has substantially vertical trench-sidewalls near the top surface, the vertical trench-sidewalls near the top surface containing crystallographic plane that oxidizes at a rate comparable to that of the top surface. An insulating layer is grown on the top surface and on the trench-sidewalls and on corners where sidewall surfaces approach the top surface, the insulating layer at the corners being substantially thicker than at the sidewall adjacent to the corners. The difference in the oxide thickness is due to the faster oxidizing planes exposed at the corners. Finally, the trench is filled with a dielectric material.
    Type: Grant
    Filed: October 23, 2003
    Date of Patent: July 12, 2005
    Assignee: Texas Instruments Incorporated
    Inventors: Zhihao Chen, Freidoon Mehrad, Brian K. Kirkpatrick, Jeff A. White, Edmund G. Russell, Jon Holt, Jason D. Mehigan
  • Publication number: 20050062127
    Abstract: A trench structure in a wafer of semiconductor material and the method of forming the trench structure are described. The trench structure is formed on a semiconductor wafer that has a top surface of slow oxidization rate—slower than that of other major crystallographic planes of the semiconductor material. The trench is etched into the semiconductor wafer. The trench has substantially vertical trench-sidewalls near the top surface, the vertical trench-sidewalls near the top surface containing crystallographic plane that oxidizes at a rate comparable to that of the top surface. An insulating layer is grown on the top surface and on the trench-sidewalls and on corners where sidewall surfaces approach the top surface, the insulating layer at the corners being substantially thicker than at the sidewall adjacent to the corners. The difference in the oxide thickness is due to the faster oxidizing planes exposed at the corners. Finally, the trench is filled with a dielectric material.
    Type: Application
    Filed: October 23, 2003
    Publication date: March 24, 2005
    Inventors: Zhihao Chen, Freidoon Mehrad, Brian Kirkpatrick, Jeff White, Edmund Russell, Jon Holt, Jason Mehigan
  • Patent number: 6869862
    Abstract: The present invention provides a method for improving a physical property of a substrate, a method for manufacturing an integrated circuit, and an integrated circuit manufactured using the aforementioned method. In one aspect of the invention, the method for improving a physical property of a substrate includes subjecting the substrate to effects of a plasma process 830, wherein the substrate has a physical property defect value associated therewith subsequent to the plasma process. The method further includes exposing the substrate to an ultraviolet (UV) energy source 840 to improve the physical property defect value.
    Type: Grant
    Filed: August 8, 2003
    Date of Patent: March 22, 2005
    Assignee: Texas Instruments Incorporated
    Inventors: Brian K. Kirkpatrick, Mercer Brugler, Eddie Breashears, Jon Holt, Corbett Zabierek, Rajesh Khamankar
  • Publication number: 20040029391
    Abstract: The present invention provides a method for improving a physical property of a substrate, a method for manufacturing an integrated circuit, and an integrated circuit manufactured using the aforementioned method. In one aspect of the invention, the method for improving a physical property of a substrate includes subjecting the substrate to effects of a plasma process 830, wherein the substrate has a physical property defect value associated therewith subsequent to the plasma process. The method further includes exposing the substrate to an ultraviolet (UV) energy source 840 to improve the physical property defect value.
    Type: Application
    Filed: August 8, 2003
    Publication date: February 12, 2004
    Applicant: Texas Instruments Incorporated
    Inventors: Brian K. Kirkpatrick, Mercer Brugler, Eddie Breashears, Jon Holt, Corbett Zabierek, Rajesh Khamankar