Patents by Inventor Jon Kjellman

Jon Kjellman has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230194781
    Abstract: Example embodiments relate to multilevel coupling for phase front engineering. An example integrated optical structure for phase front engineering of optical beams includes a substrate. The integrated optical structure also includes a plurality of optical layers formed on the substrate. Each of the optical layers includes an optical phased array that includes a plurality of optical waveguides. Each of the optical layers also includes a coupling section for each of the optical waveguides. Each coupling section is configured to control the phase of an optical beam coupling out of the optical waveguide. Additionally, the integrated optical structure includes a slab waveguide formed on the substrate and between two of the optical layers. The slab waveguide is in optical communication with the coupling sections of the two optical layers. The slab waveguide includes a slab waveguide outcoupling structure.
    Type: Application
    Filed: December 19, 2022
    Publication date: June 22, 2023
    Inventors: Bruno Figeys, Jon Kjellman, Roelof Jansen
  • Publication number: 20230121678
    Abstract: An optical frequency comb device includes: an optical waveguide; a first mirror disposed at a first position in the optical waveguide; a second mirror disposed at a second position different from the first position, in the optical waveguide; a gain medium and a saturable absorber which are disposed between the first mirror and the second mirror; and a controller that fixes one of a repetition frequency and a carrier-envelope offset frequency of an optical frequency comb output from an end of the optical waveguide, and changes the other of the repetition frequency and the carrier-envelope offset frequency.
    Type: Application
    Filed: December 20, 2022
    Publication date: April 20, 2023
    Inventors: Tasuku NAKAMURA, Yasuhisa INADA, Jon KJELLMAN, Bart KUYKEN, Kasper Van GASSE, Artur HERMANS
  • Publication number: 20220082696
    Abstract: A system for determining a range of a scene is provided. In one aspect, the system includes an optical source to generate an input signal and a first optical coupler to tap a predetermined portion of the input signal as a local oscillator signal. The system includes an emitting unit to transmit a remaining portion of the input signal as an output signal onto the scene, and an imaging unit to receive return signals from the scene. The imaging unit includes an array of detectors directly coupled to one or more lenses. A position of each detector is associated with a unique direction of the return signals. Also, the lenses may receive and direct the return signals onto the detectors. Further, each detector of the array is configured to mix the local oscillator signal with a corresponding return signal thereby generating a RF beat signal that is further processed to determine the range of the scene.
    Type: Application
    Filed: September 15, 2021
    Publication date: March 17, 2022
    Inventors: Jon Kjellman, Marcus Dahlem, Xavier Rottenberg, Roelof Jansen
  • Publication number: 20210063840
    Abstract: A phase difference measurement device comprises at least two optical waveguides arranged in parallel in a first plane. Each optical waveguide comprises a proximal portion and a distal portion. The proximal portion of at least one of the optical waveguides comprises a phase-shifting device configured to induce a phase shift of a light wave being transmitted in the phase difference measurement device. The device further comprises at least one phase interrogator device arranged in the first plane between two neighboring optical waveguides of the optical waveguides. The phase interrogator device is configured to couple light from the two neighboring optical waveguides to interfere in the phase interrogator to generate an interference light wave. At least one photodetector is arranged for detecting the interference light wave. The photodetector is arranged in a second plane other than the first plane.
    Type: Application
    Filed: August 20, 2020
    Publication date: March 4, 2021
    Inventors: Bruno Figeys, Jon Kjellman, Xavier Rottenberg, Roelof Jansen