Patents by Inventor Jon Kluge

Jon Kluge has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9254333
    Abstract: This invention provides for a process of rapidly forming silk fibroin gelation through ultrasonication. Under the appropriate conditions, gelation can be controlled to occur within two hours after the ultrasonication treatment. Biological materials, including viable cells, or therapeutic agents can be encapsulated in the hydrogels formed from the process and be used as delivery vehicles.
    Type: Grant
    Filed: January 23, 2015
    Date of Patent: February 9, 2016
    Assignee: Trustees of Tufts College
    Inventors: Xiaoqin Wang, Jon Kluge, Gary G. Leisk, David L. Kaplan
  • Publication number: 20150258199
    Abstract: This invention provides for a process of rapidly forming silk fibroin gelation through ultrasonication. Under the appropriate conditions, gelation can be controlled to occur within two hours after the ultrasonication treatment. Biological materials, including viable cells, or therapeutic agents can be encapsulated in the hydrogels formed from the process and be used as delivery vehicles.
    Type: Application
    Filed: January 23, 2015
    Publication date: September 17, 2015
    Inventors: Xiaoqin Wang, Jon Kluge, Gary G. Leisk, David L. Kaplan
  • Publication number: 20140303346
    Abstract: This invention provides for a process of rapidly forming silk fibroin gelation through ultrasonication. Under the appropriate conditions, gelation can be controlled to occur within two hours after the ultrasonication treatment. Biological materials, including viable cells, or therapeutic agents can be encapsulated in the hydrogels formed from the process and be used as delivery vehicles.
    Type: Application
    Filed: April 7, 2014
    Publication date: October 9, 2014
    Applicant: TRUSTEES OF TUFTS COLLEGE
    Inventors: Xiaoqin Wang, Jon Kluge, Gary G. Leisk, David L. Kaplan
  • Patent number: 8722067
    Abstract: This invention provides for a process of rapidly forming silk fibroin gelation through ultrasonication. Under the appropriate conditions, gelation can be controlled to occur within two hours after the ultrasonication treatment. Biological materials, including viable cells, or therapeutic agents can be encapsulated in the hydrogels formed from the process and be used as delivery vehicles.
    Type: Grant
    Filed: April 27, 2012
    Date of Patent: May 13, 2014
    Assignee: Trustees of Tufts College
    Inventors: Xiaoqin Wang, Jon Kluge, Gary G. Leisk, David L. Kaplan
  • Publication number: 20130060008
    Abstract: This invention provides for a process of rapidly forming silk fibroin gelation through ultrasonication. Under the appropriate conditions, gelation can be controlled to occur within two hours after the ultrasonication treatment. Biological materials, including viable cells, or therapeutic agents can be encapsulated in the hydrogels formed from the process and be used as delivery vehicles.
    Type: Application
    Filed: April 27, 2012
    Publication date: March 7, 2013
    Applicant: TRUSTEES OF TUFTS COLLEGE
    Inventors: Xiaoqin Wang, Jon Kluge, Gary G. Leisk, David L. Kaplan
  • Patent number: 8187616
    Abstract: This invention provides for a process of rapidly forming silk fibroin gelation through ultrasonication. Under the appropriate conditions, gelation can be controlled to occur within two hours after the ultrasonication treatment. Biological materials, including viable cells, or therapeutic agents can be encapsulated in the hydrogels formed from the process and be used as delivery vehicles.
    Type: Grant
    Filed: May 29, 2008
    Date of Patent: May 29, 2012
    Assignee: Trustees of Tufts College
    Inventors: Xiaoqin Wang, Jon Kluge, Gary G. Leisk, David L. Kaplan
  • Publication number: 20100178304
    Abstract: This invention provides for a process of rapidly forming silk fibroin gelation through ultrasonication. Under the appropriate conditions, gelation can be controlled to occur within two hours after the ultrasonication treatment. Biological materials, including viable cells, or therapeutic agents can be encapsulated in the hydrogels formed from the process and be used as delivery vehicles.
    Type: Application
    Filed: May 29, 2008
    Publication date: July 15, 2010
    Applicant: TRUSTEES OF TUFTS COLLEGE
    Inventors: Xiaoqin Wang, Jon Kluge, Gary G. Leisk, David L. Kaplan