Patents by Inventor Jon M. Nichols

Jon M. Nichols has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20170276217
    Abstract: A continuously variable transmission (CVT) can be used in concert with an electric motor to facilitate power assistance to a rider in a bicycle. In some embodiments, the CVT and motor is mounted on the frame of the bicycle at a location forward of the rear wheel hub of the bicycle. In some embodiments, the CVT is mounted on and supported by members of the bicycle frame such that the CVT is coaxial with the crankshaft of the bicycle. The crankshaft is configured to drive elements of the CVT, which are configured to operationally drive the traction rings and the traction planets. In some embodiments, the motor is configured to drive elements of the CVT. In other embodiments, the motor is configured to drive the crankshaft. Inventive component and subassemblies for such a CVT are disclosed.
    Type: Application
    Filed: June 9, 2017
    Publication date: September 28, 2017
    Inventors: Jon M. Nichols, Christopher M. Vasiliotis
  • Publication number: 20170268638
    Abstract: Components, subassemblies, systems, and/or methods for improving the performance and increasing the life of continuously variable transmissions (CVT). A first stator may be formed with an outer diameter greater than an outer diameter of a second stator. A stator may have radial slots formed to extend farther radially inward than slots on the other stator. The larger outer diameter of a stator or the formation of guide slots on a first stator extending farther radially inward of guide slots on a second stator may prevent egress of a planet axle from a radial slot, increase range of the CVT, allow for larger tolerances to reduce losses, and other advantages, Slots on a timing plate may be formed having a width greater than a width of guide slots formed on either stator to allow the stators to control adjustments while the timing plate avoids runaway axles. The shape, including junction between surfaces on a timing plate or stator may also prevent an axle from egressing.
    Type: Application
    Filed: March 17, 2017
    Publication date: September 21, 2017
    Inventors: Jon M. Nichols, Brian Benjamin Sweet, Brad P. Pohl, Fernand A. Thomassy, William J. Elliott, David Galvin, Daniel J. Dawe
  • Patent number: 9709138
    Abstract: Traction planets and traction rings can be operationally coupled to a planetary gearset to provide a continuously variable transmission (CVT). The CVT can be used in a bicycle. In one embodiment, the CVT is mounted on the frame of the bicycle at a location forward of the rear wheel hub of the bicycle. In one embodiment, the CVT is mounted on and supported by members of the bicycle frame such that the CVT is coaxial with the crankshaft of the bicycle. The crankshaft is configured to drive elements of the planetary gearset, which are configured to operationally drive the traction rings and the traction planets. Inventive component and subassemblies for such a CVT are disclosed. A shifting mechanism includes a plurality of pivot arms arranged to pivot about the centers of the traction planets as a shift pin hub moves axially.
    Type: Grant
    Filed: May 16, 2016
    Date of Patent: July 18, 2017
    Assignee: Fallbrook Intellectual Property Company LLC
    Inventors: Donald C. Miller, Robert A. Smithson, Brad P. Pohl, Charles B. Lohr, Jon M. Nichols
  • Patent number: 9677650
    Abstract: A continuously variable transmission (CVT) can be used in concert with an electric motor to facilitate power assistance to a rider in a bicycle. In some embodiments, the CVT and motor is mounted on the frame of the bicycle at a location forward of the rear wheel hub of the bicycle. In some embodiments, the CVT is mounted on and supported by members of the bicycle frame such that the CVT is coaxial with the crankshaft of the bicycle. The crankshaft is configured to drive elements of the CVT, which are configured to operationally drive the traction rings and the traction planets. In some embodiments, the motor is configured to drive elements of the CVT. In other embodiments, the motor is configured to drive the crankshaft. Inventive component and subassemblies for such a CVT are disclosed.
    Type: Grant
    Filed: October 16, 2015
    Date of Patent: June 13, 2017
    Assignee: Fallbrook Intellectual Property Company LLC
    Inventors: Jon M. Nichols, Christopher M. Vasiliotis
  • Publication number: 20170102053
    Abstract: Inventive embodiments are directed to components, subassemblies, systems, and/or methods for continuously variable transmissions (CVT). In one embodiment, a main axle is adapted to receive a carrier assembly to facilitate the support of components in a CVT. In another embodiment, a carrier includes a stator support member and a stator interfacial member. In some embodiments, the stator interfacial member is configured to interact with planet subassemblies of a CVT. Various inventive planet subassemblies and idler assemblies can be used to facilitate shifting the ratio of a CVT. In some embodiments, the planet subassemblies include legs configured to have a sliding interface with a carrier assembly. Embodiments of a hub shell, a hub cover are adapted to house components of a CVT and, in some embodiments, to cooperate with other components of the CVT to support operation and/or functionality of the CVT. Among other things, shift control interfaces and braking features for a CVT are disclosed.
    Type: Application
    Filed: December 21, 2016
    Publication date: April 13, 2017
    Inventors: Jon M. Nichols, Matthew P. Simister, Daniel J. Dawe, Charles B. Lohr, Timothy M. Obrzut
  • Patent number: 9528561
    Abstract: Inventive embodiments are directed to components, subassemblies, systems, and/or methods for continuously variable transmissions (CVT). In one embodiment, a main axle is adapted to receive a carrier assembly to facilitate the support of components in a CVT. In another embodiment, a carrier includes a stator support member and a stator interfacial member. In some embodiments, the stator interfacial member is configured to interact with planet subassemblies of a CVT. Various inventive planet subassemblies and idler assemblies can be used to facilitate shifting the ratio of a CVT. In some embodiments, the planet subassemblies include legs configured to have a sliding interface with a carrier assembly. Embodiments of a hub shell, a hub cover are adapted to house components of a CVT and, in some embodiments, to cooperate with other components of the CVT to support operation and/or functionality of the CVT. Among other things, shift control interfaces and braking features for a CVT are disclosed.
    Type: Grant
    Filed: July 2, 2015
    Date of Patent: December 27, 2016
    Assignee: Fallbrook Intellectual Property Company LLC
    Inventors: Jon M. Nichols, Matthew P. Simister, Daniel J. Dawe, Charles B. Lohr, Timothy M. Obrzut
  • Publication number: 20160273627
    Abstract: Traction planets and traction rings can be operationally coupled to a planetary gearset to provide a continuously variable transmission (CVT). The CVT can be used in a bicycle. In one embodiment, the CVT is mounted on the frame of the bicycle at a location forward of the rear wheel hub of the bicycle. In one embodiment, the CVT is mounted on and supported by members of the bicycle frame such that the CVT is coaxial with the crankshaft of the bicycle. The crankshaft is configured to drive elements of the planetary gearset, which are configured to operationally drive the traction rings and the traction planets. Inventive component and subassemblies for such a CVT are disclosed. A shifting mechanism includes a plurality of pivot arms arranged to pivot about the centers of the traction planets as a shift pin hub moves axially.
    Type: Application
    Filed: May 16, 2016
    Publication date: September 22, 2016
    Inventors: Donald C. Miller, Robert A. Smithson, Brad P. Pohl, Charles B. Lohr, Jon M. Nichols
  • Publication number: 20160186847
    Abstract: Inventive embodiments are directed to components, subassemblies, systems, and/or methods for continuously variable transmissions (CVT). In one embodiment, a control system is adapted to facilitate a change in the ratio of a CVT. In another embodiment, a control system includes a stator plate configured to have a plurality of radially offset slots. Various inventive traction planet assemblies and stator plates can be used to facilitate shifting the ratio of a CVT. In some embodiments, the traction planet assemblies include planet axles configured to cooperate with the stator plate. In one embodiment, the stator plate is configured to rotate and apply a skew condition to each of the planet axles. In some embodiments, a stator driver is operably coupled to the stator plate. Embodiments of a traction sun are adapted to cooperate with other components of the CVT to support operation and/or functionality of the CVT. Among other things, shift control interfaces for a CVT are disclosed.
    Type: Application
    Filed: March 7, 2016
    Publication date: June 30, 2016
    Inventors: Jon M. Nichols, Gregory G. Stevenson, Brad P. Pohl, Fernand A. Thomassy, Charles B. Lohr, Jeremy Carter, John W. Sherrill, Brian B. Sweet
  • Patent number: 9341246
    Abstract: Traction planets and traction rings can be operationally coupled to a planetary gearset to provide a continuously variable transmission (CVT). The CVT can be used in a bicycle. In one embodiment, the CVT is mounted on the frame of the bicycle at a location forward of the rear wheel hub of the bicycle. In one embodiment, the CVT is mounted on and supported by members of the bicycle frame such that the CVT is coaxial with the crankshaft of the bicycle. The crankshaft is configured to drive elements of the planetary gearset, which are configured to operationally drive the traction rings and the traction planets. Inventive component and subassemblies for such a CVT are disclosed. A shifting mechanism includes a plurality of pivot arms arranged to pivot about the centers of the traction planets as a shift pin hub moves axially.
    Type: Grant
    Filed: April 28, 2014
    Date of Patent: May 17, 2016
    Assignee: Fallbrook Intellectual Property Company LLC
    Inventors: Donald C Miller, Robert A Smithson, Brad P Pohl, Charles B Lohr, Jon M Nichols
  • Patent number: 9279482
    Abstract: Inventive embodiments are directed to components, subassemblies, systems, and/or methods for continuously variable transmissions (CVT). In one embodiment, a control system is adapted to facilitate a change in the ratio of a CVT. In another embodiment, a control system includes a stator plate configured to have a plurality of radially offset slots. Various inventive traction planet assemblies and stator plates can be used to facilitate shifting the ratio of a CVT. In some embodiments, the traction planet assemblies include planet axles configured to cooperate with the stator plate. In one embodiment, the stator plate is configured to rotate and apply a skew condition to each of the planet axles. In some embodiments, a stator driver is operably coupled to the stator plate. Embodiments of a traction sun are adapted to cooperate with other components of the CVT to support operation and/or functionality of the CVT. Among other things, shift control interfaces for a CVT are disclosed.
    Type: Grant
    Filed: March 3, 2014
    Date of Patent: March 8, 2016
    Assignee: Fallbrook Intellectual Property Company LLC
    Inventors: Jon M Nichols, Gregory G Stevenson, Brad P Pohl, Fernand A Thomassy, Charles B Lohr, Jeremy Carter, John W Sherrill, Brian B Sweet
  • Publication number: 20160040763
    Abstract: A continuously variable transmission (CVT) can be used in concert with an electric motor to facilitate power assistance to a rider in a bicycle. In some embodiments, the CVT and motor is mounted on the frame of the bicycle at a location forward of the rear wheel hub of the bicycle. In some embodiments, the CVT is mounted on and supported by members of the bicycle frame such that the CVT is coaxial with the crankshaft of the bicycle. The crankshaft is configured to drive elements of the CVT, which are configured to operationally drive the traction rings and the traction planets. In some embodiments, the motor is configured to drive elements of the CVT. In other embodiments, the motor is configured to drive the crankshaft. Inventive component and subassemblies for such a CVT are disclosed.
    Type: Application
    Filed: October 16, 2015
    Publication date: February 11, 2016
    Inventors: Jon M. Nichols, Christopher M. Vasiliotis
  • Publication number: 20150377305
    Abstract: Inventive embodiments are directed to components, subassemblies, systems, and/or methods for continuously variable transmissions (CVT). In one embodiment, a main axle is adapted to receive a carrier assembly to facilitate the support of components in a CVT. In another embodiment, a carrier includes a stator support member and a stator interfacial member. In some embodiments, the stator interfacial member is configured to interact with planet subassemblies of a CVT. Various inventive planet subassemblies and idler assemblies can be used to facilitate shifting the ratio of a CVT. In some embodiments, the planet subassemblies include legs configured to have a sliding interface with a carrier assembly. Embodiments of a hub shell, a hub cover are adapted to house components of a CVT and, in some embodiments, to cooperate with other components of the CVT to support operation and/or functionality of the CVT. Among other things, shift control interfaces and braking features for a CVT are disclosed.
    Type: Application
    Filed: July 2, 2015
    Publication date: December 31, 2015
    Inventors: Jon M. Nichols, Matthew P. Simister, Daniel J. Dawe, Charles B. Lohr, Timothy M. Obrzut
  • Publication number: 20150369348
    Abstract: Inventive embodiments are directed to components, subassemblies, systems, and/or methods for continuously variable transmissions (CVT). In one embodiment, a main axle is adapted to receive a shift rod that cooperates with a shift rod nut to actuate a ratio change in a CVT. In another embodiment, an axial force generating mechanism can include a torsion spring, a traction ring adapted to receive the torsion spring, and a roller cage retainer configured to cooperate with the traction ring to house the torsion spring. Various inventive idler-and-shift-cam assemblies can be used to facilitate shifting the ratio of a CVT. Embodiments of a hub shell and a hub cover are adapted to house components of a CVT and, in some embodiments, to cooperate with other components of the CVT to support operation and/or functionality of the CVT. Among other things, shift control interfaces and braking features for a CVT are disclosed.
    Type: Application
    Filed: August 28, 2015
    Publication date: December 24, 2015
    Inventors: Jon M. Nichols, Brad P. Pohl, Daniel J. Dawe, Oronde J. Armstrong, Charles B. Lohr, Loren T. McDaniel, Matthew P. Simister, Fernand A. Thomassy, Ghayyurul I. Usmani, Paul M. Elhardt, Terry L. Stewart, Peter D. Poxton, Elton L. Eidson
  • Publication number: 20150337928
    Abstract: A continuously variable transmission (CVT) having a main shaft configured to support and position various components of the CVT. Shift cam discs cooperate with ball-leg assemblies to shift the transmission ration of the CVT. Load cam discs, a torsion disc, rolling elements, and a hub cap shell are configured to generate axial force, transmit torque, and manage reaction forces. In one embodiment, a splined input shaft and a torsion disc having a splined bore cooperate to input torque into the variator of the CVT. Among other things, various ball axles, axle-ball combinations, and reaction force grounding configurations are disclosed. In one embodiment, a CVT having axial force generation means at both the input and output elements is disclosed.
    Type: Application
    Filed: December 29, 2014
    Publication date: November 26, 2015
    Inventors: Robert A. Smithson, Brad P. Pohl, Oronde J. Armstrong, Donald C. Miller, Daniel J. Dawe, Fernand A. Thomassy, Matthew P. Simister, Wesley R. Poth, Jon M. Nichols, Charles B. Lohr
  • Patent number: 9121464
    Abstract: Inventive embodiments are directed to components, subassemblies, systems, and/or methods for continuously variable transmissions (CVT). In one embodiment, a main axle is adapted to receive a shift rod that cooperates with a shift rod nut to actuate a ratio change in a CVT. In another embodiment, an axial force generating mechanism can include a torsion spring, a traction ring adapted to receive the torsion spring, and a roller cage retainer configured to cooperate with the traction ring to house the torsion spring. Various inventive idler-and-shift-cam assemblies can be used to facilitate shifting the ratio of a CVT. Embodiments of a hub shell and a hub cover are adapted to house components of a CVT and, in some embodiments, to cooperate with other components of the CVT to support operation and/or functionality of the CVT. Among other things, shift control interfaces and braking features for a CVT are disclosed.
    Type: Grant
    Filed: November 20, 2012
    Date of Patent: September 1, 2015
    Assignee: Fallbrook Intellectual Property Company LLC
    Inventors: Jon M Nichols, Brad P Pohl, Daniel J Dawe, Oronde J Armstrong, Charles B Lohr, Loren T McDaniel, Matthew P Simister, Fernand A Thomassy, Ghayyurul I Usmani, Paul M Elhardt, Terry L Stewart, Peter D Poxton, Elton L Eidson
  • Patent number: 9086145
    Abstract: Mechanisms and methods for clamping force generation are disclosed. In one embodiment, a clamping force generator includes a spring coupled to a traction ring and to a load cam roller cage. The traction ring can be provided with a recess to receive the spring. In some embodiments, a relatively short spring is provided. In other embodiments, a spring couples to a wire and the spring-wire combination couples to the traction ring and the load cam roller cage. In some embodiments, the load cam roller cage is provided with tabs adapted to engage the wire and/or the spring. In yet other embodiments, the traction ring is configured to receive a dowel pin for coupling to the spring. One or more of the tabs can include a tab notch that cooperates with a stop pin coupled to the traction ring to provide adjustment of the travel of the load cam roller cage.
    Type: Grant
    Filed: February 12, 2013
    Date of Patent: July 21, 2015
    Assignee: Fallbrook Intellectual Property Company LLC
    Inventors: Brad P Pohl, Daniel J Dawe, Charles B Lohr, Jon M Nichols
  • Patent number: 9074674
    Abstract: Inventive embodiments are directed to components, subassemblies, systems, and/or methods for continuously variable transmissions (CVT). In one embodiment, a main axle is adapted to receive a carrier assembly to facilitate the support of components in a CVT. In another embodiment, a carrier includes a stator support member and a stator interfacial member. In some embodiments, the stator interfacial member is configured to interact with planet subassemblies of a CVT. Various inventive planet subassemblies and idler assemblies can be used to facilitate shifting the ratio of a CVT. In some embodiments, the planet subassemblies include legs configured to have a sliding interface with a carrier assembly. Embodiments of a hub shell, a hub cover are adapted to house components of a CVT and, in some embodiments, to cooperate with other components of the CVT to support operation and/or functionality of the CVT. Among other things, shift control interfaces and braking features for a CVT are disclosed.
    Type: Grant
    Filed: February 3, 2014
    Date of Patent: July 7, 2015
    Assignee: Fallbrook Intellectual Property Company LLC
    Inventors: Jon M Nichols, Matthew P Simister, Daniel J Dawe, Charles B Lohr, Timothy M Obrzut
  • Patent number: 8920285
    Abstract: A continuously variable transmission (CVT) having a main shaft configured to support and position various components of the CVT. Shift cam discs cooperate with ball-leg assemblies to shift the transmission ration of the CVT. Load cam discs, a torsion disc, rolling elements, and a hub cap shell are configured to generate axial force, transmit torque, and manage reaction forces. In one embodiment, a splined input shaft and a torsion disc having a splined bore cooperate to input torque into the variator of the CVT. Among other things, various ball axles, axle-ball combinations, and reaction force grounding configurations are disclosed. In one embodiment, a CVT having axial force generation means at both the input and output elements is disclosed.
    Type: Grant
    Filed: December 10, 2012
    Date of Patent: December 30, 2014
    Assignee: Fallbrook Intellectual Property Company LLC
    Inventors: Robert A Smithson, Brad P Pohl, Oronde J Armstrong, Donald C Miller, Daniel J Dawe, Fernand A Thomassy, Mathew P Simister, Wesley R Poth, Jon M Nichols, Charles B Lohr
  • Publication number: 20140323260
    Abstract: Traction planets and traction rings can be operationally coupled to a planetary gearset to provide a continuously variable transmission (CVT). The CVT can be used in a bicycle. In one embodiment, the CVT is mounted on the frame of the bicycle at a location forward of the rear wheel hub of the bicycle. In one embodiment, the CVT is mounted on and supported by members of the bicycle frame such that the CVT is coaxial with the crankshaft of the bicycle. The crankshaft is configured to drive elements of the planetary gearset, which are configured to operationally drive the traction rings and the traction planets. Inventive component and subassemblies for such a CVT are disclosed. A shifting mechanism includes a plurality of pivot arms arranged to pivot about the centers of the traction planets as a shift pin hub moves axially.
    Type: Application
    Filed: April 28, 2014
    Publication date: October 30, 2014
    Applicant: Fallbrook Intellectual Property Company LLC
    Inventors: Donald C. Miller, Robert A. Smithson, Brad P. Pohl, Charles B. Lohr, Jon M. Nichols
  • Publication number: 20140179479
    Abstract: Inventive embodiments are directed to components, subassemblies, systems, and/or methods for continuously variable transmissions (CVT). In one embodiment, a control system is adapted to facilitate a change in the ratio of a CVT. In another embodiment, a control system includes a stator plate configured to have a plurality of radially offset slots. Various inventive traction planet assemblies and stator plates can be used to facilitate shifting the ratio of a CVT. In some embodiments, the traction planet assemblies include planet axles configured to cooperate with the stator plate. In one embodiment, the stator plate is configured to rotate and apply a skew condition to each of the planet axles. In some embodiments, a stator driver is operably coupled to the stator plate. Embodiments of a traction sun are adapted to cooperate with other components of the CVT to support operation and/or functionality of the CVT. Among other things, shift control interfaces for a CVT are disclosed.
    Type: Application
    Filed: March 3, 2014
    Publication date: June 26, 2014
    Applicant: FALLBROOK INTELLECTUAL PROPERTY COMPANY LLC
    Inventors: Jon M. Nichols, Gregory G. Stevenson, Brad P. Pohl, Fernand A. Thomassy, Charles B. Lohr, Jeremy Carter, John W. Sherrill, Brian B. Sweet