Patents by Inventor Jon Mohn

Jon Mohn has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 6440866
    Abstract: A general method of the invention is to provide a polymer-hardening precursor piece (such as silicon, carbon, silicon carbide or silicon nitride, but preferably silicon) within the reactor chamber during an etch process with a fluoro-carbon or fluoro-hydrocarbon gas, and to heat the polymer-hardening precursor piece above the polymerization temperature sufficiently to achieve a desired increase in oxide-to-silicon etch selectivity. Generally, this polymer-hardening precursor or silicon piece may be an integral part of the reactor chamber walls and/or ceiling or a separate, expendable and quickly removable piece, and the heating/cooling apparatus may be of any suitable type including apparatus which conductively or remotely heats the silicon piece.
    Type: Grant
    Filed: June 16, 2000
    Date of Patent: August 27, 2002
    Assignee: Applied Materials, Inc.
    Inventors: Kenneth S. Collins, Michael Rice, David W. Groechel, Gerald Zheyao Yin, Jon Mohn, Craig A. Roderick, Douglas Buchberger, Chan-Lon Yang, Yuen-Kui Wong, Jeffrey Marks, Peter Keswick
  • Patent number: 6218312
    Abstract: A general method of the invention is to provide a polymer-hardening precursor piece (such as silicon, carbon, silicon carbide or silicon nitride, but preferably silicon) within the reactor chamber during an etch process with a fluoro-carbon or fluoro-hydrocarbon gas, and to heat the polymer-hardening precursor piece above the polymerization temperature sufficiently to achieve a desired increase in oxide-to-silicon etch selectivity. Generally, this polymer-hardening precursor or silicon piece may be an integral part of the reactor chamber walls and/or ceiling or a separate, expendable and quickly removable piece, and the heating/cooling apparatus may be of any suitable type including apparatus which conductively or remotely heats the silicon piece.
    Type: Grant
    Filed: October 8, 1998
    Date of Patent: April 17, 2001
    Assignee: Applied Materials Inc.
    Inventors: Kenneth S. Collins, Michael Rice, David W. Groechel, Gerald Zheyao Yin, Jon Mohn, Craig A. Roderick, Douglas Buchberger, Chan-Lon Yang, Yuen-Kui Wong, Jeffrey Marks, Peter Keswick
  • Patent number: 6193836
    Abstract: The invention is embodied by a plasma reactor for processing a workpiece, including a reactor enclosure defining a processing chamber, a semiconductor ceiling window, a base within the chamber for supporting the workpiece during processing thereof, the semiconductor ceiling including a gas inlet system for admitting a plasma precursor gas into the chamber through the ceiling, and apparatus for coupling plasma source power into the chamber.
    Type: Grant
    Filed: January 10, 2000
    Date of Patent: February 27, 2001
    Assignee: Applied Materials, Inc.
    Inventors: Jon Mohn, Mei Chang, Raymond Hung, Kenneth S. Collins, Ru-Liang Lee
  • Patent number: 6036877
    Abstract: A general method of the invention is to provide a polymer-hardening precursor piece (such as silicon, carbon, silicon carbide or silicon nitride, but preferably silicon) within the reactor chamber during an etch process with a fluoro-carbon or fluoro-hydrocarbon gas, and to heat the polymer-hardening precursor piece above the polymerization temperature sufficiently to achieve a desired increase in oxide-to-silicon etch selectivity. Generally, this polymer-hardening precursor or silicon piece may be an integral part of the reactor chamber walls and/or ceiling or a separate, expendable and quickly removable piece, and the heating/cooling apparatus may be of any suitable type including apparatus which conductively or remotely heats the silicon piece.
    Type: Grant
    Filed: May 13, 1996
    Date of Patent: March 14, 2000
    Assignee: Applied Materials, Inc.
    Inventors: Kenneth S. Collins, Michael Rice, David W. Groechel, Gerald Zheyao Yin, Jon Mohn, Craig A. Roderick, Douglas Buchberger, Chan-Lon Yang, Yuen-Kui Wong, Jeffrey Marks, Peter Keswick
  • Patent number: 6024826
    Abstract: A general method of the invention is to provide a polymer-hardening precursor piece (such as silicon, carbon, silicon carbide or silicon nitride, but preferably silicon) within the reactor chamber during an etch process with a fluoro-carbon or fluoro-hydrocarbon gas, and to heat the polymer-hardening precursor piece above the polymerization temperature sufficiently to achieve a desired increase in oxide-to-silicon etch selectivity. Generally, this polymer-hardening precursor or silicon piece may be an integral part of the reactor chamber walls and/or ceiling or a separate, expendable and quickly removable piece, and the heating/cooling apparatus may be of any suitable type including apparatus which conductively or remotely heats the silicon piece.
    Type: Grant
    Filed: October 23, 1996
    Date of Patent: February 15, 2000
    Assignee: Applied Materials, Inc.
    Inventors: Kenneth Collins, Michael Rice, David Groechel, Gerald Yin, Jon Mohn, Craig Roderick, Douglas Buchberger, Chan-Lon Yang, Jerry Wong, Jeffrey Marks, Peter Keswick
  • Patent number: 5990017
    Abstract: A general method of the invention is to provide a polymer-hardening precursor piece (such as silicon, carbon, silicon carbide or silicon nitride, but preferably silicon) within the reactor chamber during an etch process with a fluoro-carbon or fluoro-hydrocarbon gas, and to heat the polymer-hardening precursor piece above the polymerization temperature sufficiently to achieve a desired increase in oxide-to-silicon etch selectivity. Generally, this polymer-hardening precursor or silicon piece may be an integral part of the reactor chamber walls and/or ceiling or a separate, expendable and quickly removable piece, and the heating/cooling apparatus may be of any suitable type including apparatus which conductively or remotely heats the silicon piece.
    Type: Grant
    Filed: June 25, 1998
    Date of Patent: November 23, 1999
    Assignee: Applied Materials, Inc.
    Inventors: Kenneth Collins, Michael Rice, David Groechel, Gerald Yin, Jon Mohn, Craig Roderick, Douglas Buchberger, Chan-Lon Yang, Jerry Wong, Jeffrey Marks, Peter Keswick
  • Patent number: 5762714
    Abstract: A plasma guard member that has the configuration of a flat concentric ring is used in a vacuum process chamber equipped with a plasma reaction chamber, a plasma source and a lower chamber which houses an electrostatic chuck for preventing charged particles from drifting or diffusing to the lower chamber and contact the electrostatic chuck such that the substrate holding capability of the chuck is not adversely affected.
    Type: Grant
    Filed: October 18, 1994
    Date of Patent: June 9, 1998
    Assignee: Applied Materials, Inc.
    Inventors: Jon Mohn, Joshua Chiu-Wing Tsui, Kenneth S. Collins
  • Patent number: 5437757
    Abstract: A clamp ring for use in a thermal reactor for processing a semiconductor wafer. The reactor includes a domed pedestal for supporting the wafer and controlling its temperature, and a clamp ring which includes an annular seat formed therein, for receiving and holding down the periphery of the wafer onto the domed pedestal. The seat formed in the clamp ring supports a ring of spheres which, in operation, engage and hold down the periphery of the wafer. Each sphere is rotationally supported in a pocket formed in the body of the clamp ring. A portion of each sphere protrudes beyond the seat so that the wafer's surface is contacted by the convex surface of the sphere. This keeps the wafer's surface and any sharp edges on the seat apart, thereby reducing damage of the wafer's surface by the seat. As the spheres are able to rotate in the pockets and therefore roll on the surface of the wafer, the chances of the damaging the wafer's surface are further reduced.
    Type: Grant
    Filed: January 21, 1994
    Date of Patent: August 1, 1995
    Assignee: Applied Materials, Inc.
    Inventors: Michael Rice, Jon Mohn