Patents by Inventor Jon Nichols

Jon Nichols has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20080039273
    Abstract: A continuously variable transmission (CVT) having a main shaft configured to support and position various components of the CVT. Shift cam discs cooperate with ball-leg assemblies to shift the transmission ration of the CVT. Load cam discs, a torsion disc, rolling elements, and a hub cap shell are configured to generate axial force, transmit torque, and manage reaction forces. In one embodiment, a splined input shaft and a torsion disc having a splined bore cooperate to input torque into the variator of the CVT. Among other things, various ball axles, axle-ball combinations, and reaction force grounding configurations are disclosed. In one embodiment, a CVT having axial force generation means at both the input and output elements is disclosed.
    Type: Application
    Filed: August 20, 2007
    Publication date: February 14, 2008
    Applicant: FALLBROOK TECHNOLOGIES INC.
    Inventors: Robert Smithson, Brad Pohl, Oronde Armstrong, Donald Miller, Daniel Dawe, Fernand Thomassy, Matthew Simister, Wesley Poth, Jon Nichols, Charles Lohr
  • Publication number: 20080039277
    Abstract: A continuously variable transmission (CVT) having a main shaft configured to support and position various components of the CVT. Shift cam discs cooperate with ball-leg assemblies to shift the transmission ration of the CVT. Load cam discs, a torsion disc, rolling elements, and a hub cap shell are configured to generate axial force, transmit torque, and manage reaction forces. In one embodiment, a splined input shaft and a torsion disc having a splined bore cooperate to input torque into the variator of the CVT. Among other things, various ball axles, axle-ball combinations, and reaction force grounding configurations are disclosed. In one embodiment, a CVT having axial force generation means at both the input and output elements is disclosed.
    Type: Application
    Filed: August 20, 2007
    Publication date: February 14, 2008
    Applicant: FALLBROOK TECHNOLOGIES INC.
    Inventors: Robert Smithson, Brad Pohl, Oronde Armstrong, Donald Miller, Daniel Dawe, Fernand Thomassy, Matthew Simister, Wesley Poth, Jon Nichols, Charles Lohr
  • Publication number: 20080039271
    Abstract: A continuously variable transmission (CVT) having a main shaft configured to support and position various components of the CVT. Shift cam discs cooperate with ball-leg assemblies to shift the transmission ration of the CVT. Load cam discs, a torsion disc, rolling elements, and a hub cap shell are configured to generate axial force, transmit torque, and manage reaction forces. In one embodiment, a splined input shaft and a torsion disc having a splined bore cooperate to input torque into the variator of the CVT. Among other things, various ball axles, axle-ball combinations, and reaction force grounding configurations are disclosed. In one embodiment, a CVT having axial force generation means at both the input and output elements is disclosed.
    Type: Application
    Filed: August 20, 2007
    Publication date: February 14, 2008
    Applicant: FALLBROOK TECHNOLOGIES INC.
    Inventors: Robert Smithson, Brad Pohl, Oronde Armstrong, Donald Miller, Daniel Dawe, Fernand Thomassy, Mathew Simister, Wesley Poth, Jon Nichols, Charles Lohr
  • Publication number: 20080034585
    Abstract: A continuously variable transmission (CVT) having a main shaft configured to support and position various components of the CVT. Shift cam discs cooperate with ball-leg assemblies to shift the transmission ration of the CVT. Load cam discs, a torsion disc, rolling elements, and a hub cap shell are configured to generate axial force, transmit torque, and manage reaction forces. In one embodiment, a splined input shaft and a torsion disc having a splined bore cooperate to input torque into the variator of the CVT. Among other things, various ball axles, axle-ball combinations, and reaction force grounding configurations are disclosed. In one embodiment, a CVT having axial force generation means at both the input and output elements is disclosed.
    Type: Application
    Filed: August 20, 2007
    Publication date: February 14, 2008
    Applicant: FALLBROOK TECHNOLOGIES INC.
    Inventors: Robert Smithson, Brad Pohl, Oronde Armstrong, Donald Miller, Daniel Dawe, Fernand Thomassy, Matthew Simister, Wesley Poth, Jon Nichols, Charles Lohr
  • Publication number: 20080039275
    Abstract: A continuously variable transmission (CVT) having a main shaft configured to support and position various components of the CVT. Shift cam discs cooperate with ball-leg assemblies to shift the transmission ration of the CVT. Load cam discs, a torsion disc, rolling elements, and a hub cap shell are configured to generate axial force, transmit torque, and manage reaction forces. In one embodiment, a splined input shaft and a torsion disc having a splined bore cooperate to input torque into the variator of the CVT. Among other things, various ball axles, axle-ball combinations, and reaction force grounding configurations are disclosed. In one embodiment, a CVT having axial force generation means at both the input and output elements is disclosed.
    Type: Application
    Filed: August 20, 2007
    Publication date: February 14, 2008
    Applicant: FALLBROOK TECHNOLOGIES INC.
    Inventors: Robert Smithson, Brad Pohl, Oronde Armstrong, Donald Miller, Daniel Dawe, Fernand Thomassy, Matthew Simister, Wesley Poth, Jon Nichols, Charles Lohr
  • Publication number: 20080039270
    Abstract: A continuously variable transmission (CVT) having a main shaft configured to support and position various components of the CVT. Shift cam discs cooperate with ball-leg assemblies to shift the transmission ration of the CVT. Load cam discs, a torsion disc, rolling elements, and a hub cap shell are configured to generate axial force, transmit torque, and manage reaction forces. In one embodiment, a splined input shaft and a torsion disc having a splined bore cooperate to input torque into the variator of the CVT. Among other things, various ball axles, axle-ball combinations, and reaction force grounding configurations are disclosed. In one embodiment, a CVT having axial force generation means at both the input and output elements is disclosed.
    Type: Application
    Filed: August 20, 2007
    Publication date: February 14, 2008
    Applicant: FALLBROOK TECHNOLOGIES INC.
    Inventors: Robert Smithson, Brad Pohl, Oronde Armstrong, Donald Miller, Daniel Dawe, Fernand Thomassy, Matthew Simister, Wesley Poth, Jon Nichols, Charles Lohr
  • Publication number: 20080040008
    Abstract: A continuously variable transmission (CVT) having a main shaft configured to support and position various components of the CVT. Shift cam discs cooperate with ball-leg assemblies to shift the transmission ration of the CVT. Load cam discs, a torsion disc, rolling elements, and a hub cap shell are configured to generate axial force, transmit torque, and manage reaction forces. In one embodiment, a splined input shaft and a torsion disc having a splined bore cooperate to input torque into the variator of the CVT. Among other things, various ball axles, axle-ball combinations, and reaction force grounding configurations are disclosed. In one embodiment, a CVT having axial force generation means at both the input and output elements is disclosed.
    Type: Application
    Filed: August 20, 2007
    Publication date: February 14, 2008
    Applicant: FALLBROOK TECHNOLOGIES INC.
    Inventors: Robert Smithson, Brad Pohl, Oronde Armstrong, Donald Miller, Daniel Dawe, Fernand Thomassy, Mathew Simister, Wesley Poth, Jon Nichols, Charles Lohr
  • Publication number: 20080039274
    Abstract: A continuously variable transmission (CVT) having a main shaft configured to support and position various components of the CVT. Shift cam discs cooperate with ball-leg assemblies to shift the transmission ration of the CVT. Load cam discs, a torsion disc, rolling elements, and a hub cap shell are configured to generate axial force, transmit torque, and manage reaction forces. In one embodiment, a splined input shaft and a torsion disc having a splined bore cooperate to input torque into the variator of the CVT. Among other things, various ball axles, axle-ball combinations, and reaction force grounding configurations are disclosed. In one embodiment, a CVT having axial force generation means at both the input and output elements is disclosed.
    Type: Application
    Filed: August 20, 2007
    Publication date: February 14, 2008
    Applicant: FALLBROOK TECHNOLOGIES INC.
    Inventors: Robert Smithson, Brad Pohl, Oronde Armstrong, Donald Miller, Daniel Dawe, Fernand Thomassy, Mathew Simister, Wesley Poth, Jon Nichols, Charles Lohr
  • Publication number: 20080039269
    Abstract: A continuously variable transmission (CVT) having a main shaft configured to support and position various components of the CVT. Shift cam discs cooperate with ball-leg assemblies to shift the transmission ration of the CVT. Load cam discs, a torsion disc, rolling elements, and a hub cap shell are configured to generate axial force, transmit torque, and manage reaction forces. In one embodiment, a splined input shaft and a torsion disc having a splined bore cooperate to input torque into the variator of the CVT. Among other things, various ball axles, axle-ball combinations, and reaction force grounding configurations are disclosed. In one embodiment, a CVT having axial force generation means at both the input and output elements is disclosed.
    Type: Application
    Filed: August 20, 2007
    Publication date: February 14, 2008
    Applicant: FALLBROOK TECHNOLOGIES INC.
    Inventors: Robert Smithson, Brad Pohl, Oronde Armstrong, Donald Miller, Daniel Dawe, Fernand Thomassy, Mathew Simister, Wesley Poth, Jon Nichols, Charles Lohr
  • Publication number: 20080034586
    Abstract: A continuously variable transmission (CVT) having a main shaft configured to support and position various components of the CVT. Shift cam discs cooperate with ball-leg assemblies to shift the transmission ration of the CVT. Load cam discs, a torsion disc, rolling elements, and a hub cap shell are configured to generate axial force, transmit torque, and manage reaction forces. In one embodiment, a splined input shaft and a torsion disc having a splined bore cooperate to input torque into the variator of the CVT. Among other things, various ball axles, axle-ball combinations, and reaction force grounding configurations are disclosed. In one embodiment, a CVT having axial force generation means at both the input and output elements is disclosed.
    Type: Application
    Filed: August 20, 2007
    Publication date: February 14, 2008
    Applicant: FALLBROOK TECHNOLOGIES INC.
    Inventors: Robert Smithson, Brad Pohl, Oronde Armstrong, Donald Miller, Daniel Dawe, Fernand Thomassy, Mathew Simister, Wesley Poth, Jon Nichols, Charles Lohr
  • Publication number: 20080039276
    Abstract: A continuously variable transmission (CVT) having a main shaft configured to support and position various components of the CVT. Shift cam discs cooperate with ball-leg assemblies to shift the transmission ration of the CVT. Load cam discs, a torsion disc, rolling elements, and a hub cap shell are configured to generate axial force, transmit torque, and manage reaction forces. In one embodiment, a splined input shaft and a torsion disc having a splined bore cooperate to input torque into the variator of the CVT. Among other things, various ball axles, axle-ball combinations, and reaction force grounding configurations are disclosed. In one embodiment, a CVT having axial force generation means at both the input and output elements is disclosed.
    Type: Application
    Filed: August 20, 2007
    Publication date: February 14, 2008
    Applicant: FALLBROOK TECHNOLOGIES INC.
    Inventors: Robert Smithson, Brad Pohl, Oronde Armstrong, Donald Miller, Daniel Dawe, Fernand Thomassy, Matthew Simister, Wesley Poth, Jon Nichols, Charles Lohr
  • Publication number: 20080032853
    Abstract: A continuously variable transmission (CVT) having a main shaft configured to support and position various components of the CVT. Shift cam discs cooperate with ball-leg assemblies to shift the transmission ration of the CVT. Load cam discs, a torsion disc, rolling elements, and a hub cap shell are configured to generate axial force, transmit torque, and manage reaction forces. In one embodiment, a splined input shaft and a torsion disc having a splined bore cooperate to input torque into the variator of the CVT. Among other things, various ball axles, axle-ball combinations, and reaction force grounding configurations are disclosed. In one embodiment, a CVT having axial force generation means at both the input and output elements is disclosed.
    Type: Application
    Filed: August 20, 2007
    Publication date: February 7, 2008
    Applicant: Fallbrook Technologies Inc.
    Inventors: Robert Smithson, Brad Pohl, Oronde Armstrong, Donald Miller, Daniel Dawe, Fernand Thomassy, Matthew Simister, Wesley Poth, Jon Nichols, Charles Lohr
  • Publication number: 20080032854
    Abstract: A continuously variable transmission (CVT) having a main shaft configured to support and position various components of the CVT. Shift cam discs cooperate with ball-leg assemblies to shift the transmission ration of the CVT. Load cam discs, a torsion disc, rolling elements, and a hub cap shell are configured to generate axial force, transmit torque, and manage reaction forces. In one embodiment, a splined input shaft and a torsion disc having a splined bore cooperate to input torque into the variator of the CVT. Among other things, various ball axles, axle-ball combinations, and reaction force grounding configurations are disclosed. In one embodiment, a CVT having axial force generation means at both the input and output elements is disclosed.
    Type: Application
    Filed: August 20, 2007
    Publication date: February 7, 2008
    Applicant: Fallbrook Technologies Inc.
    Inventors: Robert Smithson, Brad Pohl, Oronde Armstrong, Donald Miller, Daniel Dawe, Fernand Thomassy, Matthew Simister, Wesley Poth, Jon Nichols, Charles Lohr
  • Publication number: 20080032852
    Abstract: A continuously variable transmission (CVT) having a main shaft configured to support and position various components of the CVT. Shift cam discs cooperate with ball-leg assemblies to shift the transmission ration of the CVT. Load cam discs, a torsion disc, rolling elements, and a hub cap shell are configured to generate axial force, transmit torque, and manage reaction forces. In one embodiment, a splined input shaft and a torsion disc having a splined bore cooperate to input torque into the variator of the CVT. Among other things, various ball axles, axle-ball combinations, and reaction force grounding configurations are disclosed. In one embodiment, a CVT having axial force generation means at both the input and output elements is disclosed.
    Type: Application
    Filed: August 20, 2007
    Publication date: February 7, 2008
    Applicant: FALLBROOK TECHNOLOGIES INC.
    Inventors: Robert Smithson, Brad Pohl, Oronde Armstrong, Donald Miller, Daniel Dawe, Fernand Thomassy, Matthew Simister, Wesley Poth, Jon Nichols, Charles Lohr
  • Publication number: 20070155567
    Abstract: Traction planets and traction rings can be operationally coupled to a planetary gearset to provide a continuously variable transmission (CVT). The CVT can be used in a bicycle. In one embodiment, the CVT is mounted on the frame of the bicycle at a location forward of the rear wheel hub of the bicycle. In one embodiment, the CVT is mounted on and supported by members of the bicycle frame such that the CVT is coaxial with the crankshaft of the bicycle. The crankshaft is configured to drive elements of the planetary gearset, which are configured to operationally drive the traction rings and the traction planets. Inventive component and subassemblies for such a CVT are disclosed. A shifting mechanism includes a plurality of pivot arms arranged to pivot about the centers of the traction planets as a shift pin hub moves axially.
    Type: Application
    Filed: November 21, 2006
    Publication date: July 5, 2007
    Applicant: Fallbrook Technologies Inc.
    Inventors: Donald Miller, Robert Smithson, Brad Pohl, Charles Lohr, Jon Nichols
  • Patent number: 7201185
    Abstract: A multi-position micro-fluidic valve system that includes an actuator assembly with a housing and a drive shaft rotatably disposed in the housing for rotational displacement about a drive axis thereof. One end of the drive shaft is configured to couple to a drive motor for selective rotation of the drive shaft about the drive axis. One of at least two different multi-position fluid valve devices can be removably mated to the actuator assembly. Each valve device is configured for rotational movement of a corresponding valve shaft about a valve rotational axis thereof between a plurality of discrete fluid distribution positions. A coupling device selectively and removably mounts the valve shaft of the respective valve device to the drive shaft of the actuator assembly. This enables selective positioning of the multi-position fluid valve device at a discrete one of the plurality for discrete distribution positions.
    Type: Grant
    Filed: February 11, 2005
    Date of Patent: April 10, 2007
    Assignee: Rheodyne LLC
    Inventors: Carl H. Poppe, Carl M. Servin, Jon A. Nichols, Michael R. Straka
  • Patent number: 7188883
    Abstract: A multi-positional collapsible seat assembly for a motor vehicle is disclosed. The seat assembly includes a seat bottom having a load surface provided on an underside thereof and a seat back having a load surface provided on the back side thereof. As the seat assembly is collapsed, the seat bottom is pivoted forward and the seat back is pivoted adjacent to the seat bottom such that the load surfaces collectively provide a load floor for receipt of cargo. An armrest assembly is disclosed that facilitates both passenger and cargo transport. A method is also disclosed for collapsing the seat assembly.
    Type: Grant
    Filed: January 7, 2005
    Date of Patent: March 13, 2007
    Assignee: Ford Global Technologies, LLC
    Inventors: Sino J. Van Dyk, Jon Nichols, Thomas Fritz
  • Publication number: 20060152030
    Abstract: A multi-positional collapsible seat assembly for a motor vehicle is disclosed. The seat assembly includes a seat bottom having a load surface provided on an underside thereof and a seat back having a load surface provided on the back side thereof. As the seat assembly is collapsed, the seat bottom is pivoted forward and the seat back is pivoted adjacent to the seat bottom such that the load surfaces collectively provide a load floor for receipt of cargo. An armrest assembly is disclosed that facilitates both passenger and cargo transport. A method is also disclosed for collapsing the seat assembly.
    Type: Application
    Filed: January 7, 2005
    Publication date: July 13, 2006
    Inventors: Sino Van Dyk, Jon Nichols, Thomas Fritz
  • Publication number: 20060084549
    Abstract: A continuously variable transmission (CVT) having a main shaft configured to support and position various components of the CVT. Shift cam discs cooperate with ball-leg assemblies to shift the transmission ration of the CVT. Load cam discs, a torsion disc, rolling elements, and a hub cap shell are configured to generate axial force, transmit torque, and manage reaction forces. In one embodiment, a splined input shaft and a torsion disc having a splined bore cooperate to input torque into the variator of the CVT. Among other things, various ball axles, axle-ball combinations, and reaction force grounding configurations are disclosed. In one embodiment, a CVT having axial force generation means at both the input and output elements is disclosed.
    Type: Application
    Filed: October 4, 2005
    Publication date: April 20, 2006
    Inventors: Robert Smithson, Brad Pohl, Oronde Armstrong, Donald Miller, Daniel Dawe, Fernand Thomassy, Matthew Simister, Wesley Poth, Jon Nichols, Charles Lohr
  • Publication number: 20060026937
    Abstract: A filter assembly includes a pleated paper filter element and multiple foam layers. One of the foam layers adjoins the pleated paper filter element. The foam layers filter coarse debris while the pleated paper filter element filters finer debris.
    Type: Application
    Filed: August 6, 2004
    Publication date: February 9, 2006
    Inventor: Jon Nichols