Patents by Inventor Jon P. Wagner

Jon P. Wagner has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20080260631
    Abstract: A hydrogen production process includes combining a first feedstream and a second feedstream to produce, in a pre-reforming reactor, a first product stream comprising CH4 and H2O; wherein the first feedstream contains a mixture of H2 and at least one selected from the group consisting of hydrocarbons having two or more carbon atoms and alcohols having two or more carbon atoms, and the mixture has a hydrogen stoichiometric ratio (?) of at least 0.1, and the second feedstream contains steam; feeding the first product stream into a reforming reactor; and reacting the first product stream in the reforming reactor to produce a second product stream containing CO and H2; and a catalyst for use in the process.
    Type: Application
    Filed: February 12, 2008
    Publication date: October 23, 2008
    Applicant: H2GEN INNOVATIONS, INC.
    Inventors: Franklin D. Lomax, Maxim Lyubovsky, Rama Zakaria, Jon P. Wagner, Chandra Ratnasamy
  • Patent number: 7378370
    Abstract: A promoted calcium-alumina supported reforming catalyst that is particularly useful for reforming reactions where low H2/CO ratio synthesis gas, such as less than 2.3 is generated directly is disclosed. The catalyst comprises from about 25 wt % to about 98 wt % alumina, from about 0.5 wt % to about 35 wt % calcium oxide, from about 0.01 wt % to about 35 wt % of a promoter, and from about 0.05 wt % to about 30 wt % of an active metal. The promoter is selected from the group consisting of titanium, zirconium, yttrium, niobium, elements of the lanthanum-series, such as, without limitation, lanthanum, cerium, praseodymium, neodymium, promethium, samarium, europium, gadolinium, ytterbium, and combinations thereof. The active metal is selected from the group consisting of nickel, cobalt, rhodium, ruthenium, palladium, platinum, iridium and combinations thereof as active metal, wherein the calcium oxide is combined with the alumina to form aluminum-rich calcium aluminates.
    Type: Grant
    Filed: October 13, 2004
    Date of Patent: May 27, 2008
    Assignee: Süd-Chemie Inc
    Inventors: Yeping Cai, William M. Faris, Jeffery E. Riley, Robert E. Riley, David P. Tolle, Jon P. Wagner, Shizhong Zhao
  • Patent number: 7309480
    Abstract: A catalyst that can be used for the production of hydrogen from hydrocarbon fuels in steam reforming processes contains an active metal of, e.g., at least one of Ir, Pt and Pd, on a catalyst support of, e.g., at least one of monoclinic zirconia and an alkaline-earth metal hexaaluminate. The catalyst exhibits improved activity, stability in both air and reducing atmospheres, and sulfur tolerance.
    Type: Grant
    Filed: April 16, 2004
    Date of Patent: December 18, 2007
    Assignees: H2Gen Innovations, Inc., Süd-Chemie, Inc.
    Inventors: Franklin D. Lomax, Jr., John Lettow, Aaron L. Wagner, Jon P. Wagner, Duane Myers
  • Patent number: 7064097
    Abstract: A process for the preparation of water gas shift catalyst is described. The process includes mixing a copper salt and a zinc salt with an aluminum component in a solution, precipitating a precipitate from the solution, drying an forming the precipitate into the water gas shift catalyst. In an alternate process the aluminum component is prepared separately from the solution of the copper salt and the zinc salt prior to the mixing of the components. After the components are mixed a precipitate is precipitated from the solution, the precipitate is dried and formed into the catalyst.
    Type: Grant
    Filed: September 24, 2003
    Date of Patent: June 20, 2006
    Assignee: Sud-Chemie Inc.
    Inventors: Yeping Cai, Sally L. Davies, Jon P. Wagner
  • Patent number: 6984371
    Abstract: A process for catalytic reforming of a hydrocarbon feed stream containing H2O, CO2, CH4 and CO at levels such that the H2O/CH4 is less than 0.8 and the CO2/CH4 is greater than 0.5 and the feed stream further contains quantities of sulfur compounds up to about 20 ppm. The catalyst used in this process contains from about 0.5 percent to about 25 percent by weight of a calcium compound additive, from about 2 percent to about 30 percent by weight nickel, and from about 25 percent to about 98 percent by weight of an aluminum compound carrier, wherein substantially all of the calcium is combined with the alumina. The reforming process can be utilized to produce syngas, especially low hydrogen to carbon monoxide ratio syngas for applications such as iron ore reduction.
    Type: Grant
    Filed: October 20, 2004
    Date of Patent: January 10, 2006
    Assignee: Sud-Chemie Inc.
    Inventors: Shizhong Zhao, Jon P. Wagner
  • Publication number: 20040147394
    Abstract: The present development is a catalyst for use in the water-gas-shift reaction. The catalyst includes a Group VIII or Group IB metal, a transition metal promoter selected from the group consisting of rhenium, niobium, silver, manganese, vanadium, molybdenum, titanium, tungsten and a combination thereof, and a ceria-based support. The support may further include gadolinium, samarium, zirconium, lithium, cesium, lanthanum, praseodymium, manganese, titanium, tungsten, neodymium or a combination thereof. A process for preparing the catalyst is also presented. In a preferred embodiment, the process involves providing “clean” precursors as starting materials in the catalyst preparation.
    Type: Application
    Filed: January 15, 2004
    Publication date: July 29, 2004
    Inventors: Jon P. Wagner, Aaron L. Wagner, Yeping L. Cai
  • Publication number: 20040118751
    Abstract: A novel hydrocarbon feedstream catalyst bed for the desulfurization of a gas or a liquid hydrocarbon feedstream and a process comprising passing a hydrocarbon feedstream over the catalyst bed is described. The bed comprises at least two catalysts having different sulfur compound affinities and/or specificities thereby improving the overall amount of sulfur compound removal. The process reduces the sulfur content in a gas hydrocarbon feedstream from up to about 300 ppm to less than about 500 ppb, and in a liquid hydrocarbon feedstream from up to about 3% to less than about 500 ppb.
    Type: Application
    Filed: December 24, 2002
    Publication date: June 24, 2004
    Inventors: Jon P. Wagner, Eric J. Weston, R. Steve Spivey, R. Scott Osborne
  • Publication number: 20040077496
    Abstract: A calcium promoted, aluminum compound supported nickel reforming catalyst for use in a hydrocarbon feed stream containing steam, CO2, CH4 and CO at levels such that the H2O/CH4 is less than 0.8 and the CO2/CH4 is greater than 0.5 and the feed stream further containing quantities of sulfur compounds up to about 20 ppm. The catalyst contains from about 0.5 percent to about 25 percent by weight of a calcium compound additive, from about 2 percent to about 30 percent by weight nickel, and from about 25 percent to about 98 percent by weight of an aluminum compound carrier, wherein substantially all of the calcium is combined with the alumina. The catalyst can be used in reforming reactions to produce syngas and has advantages in producing low hydrogen to carbon monoxide ratio syngas for applications such as iron ore reduction.
    Type: Application
    Filed: July 26, 2002
    Publication date: April 22, 2004
    Inventors: Shizhong Zhao, Jon P. Wagner
  • Publication number: 20040063576
    Abstract: A catalyst adsorbent for the desulfurization of a feed stream, preferably in a fuel cell, wherein the catalyst includes from about 30 percent to about 80 percent nickel or a nickel compound, from about 5 percent to about 45 percent silica as a carrier, from about 1 percent to about 10 percent alumina as a promoter and from about 0.01 percent to about 15 percent magnesia as a promoter. The invention also includes processes of manufacture of the catalyst adsorbent.
    Type: Application
    Filed: September 30, 2002
    Publication date: April 1, 2004
    Applicant: Sud-Chemie Inc.
    Inventors: Eric Jamie Weston, David C. Wolfe, Michael W. Balakos, Jon P. Wagner, Kevin G. Northway
  • Patent number: 6693057
    Abstract: A low temperature copper/zinc/aluminum water gas shift catalyst is described. The catalyst is formed from a precursor, wherein the precursor includes aluminum in the form of hydrotalcite and aluminum separate from the hydrotalcite. A method of making the catalyst and a process for using the catalyst are also described.
    Type: Grant
    Filed: March 22, 2002
    Date of Patent: February 17, 2004
    Assignee: Sud-Chemie Inc.
    Inventors: Yeping Cai, Sally L. Davies, Jon P. Wagner
  • Publication number: 20030186804
    Abstract: The present development is a catalyst for use in the water-gas-shift reaction. The catalyst includes a Group VIII or Group IB metal, a transition metal promoter selected from the group consisting of rhenium, niobium, silver, manganese, vanadium, molybdenum, titanium, tungsten and a combination thereof, and a ceria-based support. The support may further include gadolinium, samarium, zirconium, lithium, cesium, lanthanum, praseodymium, manganese, titanium, tungsten or a combination thereof. A process for preparing the catalyst is also presented. In a preferred embodiment, the process involves providing “clean” precursors as starting materials in the catalyst preparation.
    Type: Application
    Filed: March 28, 2002
    Publication date: October 2, 2003
    Applicant: Sud-Chemie, Inc.
    Inventors: Jon P. Wagner, Yeping Cai, Aaron L. Wagner
  • Patent number: 5990040
    Abstract: A catalyst for the conversion of carbon oxide comprising 30 to 70% CuO, 20 to 90% ZnO, 0.1 to 20% of an element of Group IV-B in the form of an oxide, preferably titanium and/or zirconium, most preferably titanium, about 5 to about 40 percent Al.sub.2 O.sub.3 and preferably 50 to 1000 ppm of a Group 1-A element in the form of an oxide.
    Type: Grant
    Filed: July 28, 1997
    Date of Patent: November 23, 1999
    Assignee: United Catalysts Inc.
    Inventors: X. D. Hu, Jon P. Wagner
  • Patent number: 5258346
    Abstract: An extruded nickel oxide on refractory oxide hydrogenation catalyst, having, in its reduced state, a nickel surface area greater than 30 m.sup.2 /gm of reduced nickel in the catalyst and 15 to about 65 volume percent of pores having diameters of about 300 to about 1000 angstroms, is highly active for the hydrogenation of aromatics in heavy hydrocarbon streams and is relatively resistant to sulfur poisoning.
    Type: Grant
    Filed: July 13, 1992
    Date of Patent: November 2, 1993
    Assignee: United Catalysts Inc.
    Inventors: Dinah C. Huang, Edward K. Dienes, Jon P. Wagner
  • Patent number: 4947482
    Abstract: A neural network is implemented by discrete-time, continuous voltage state analog device in which neuron, synapse and synaptic strength signals are generated in highly parallel analog circuits in successive states from stored values of the interdependent signals calculated in a previous state. The neuron and synapse signals are refined in a relaxation loop while the synaptic strength signals are held constant. In learning modes, the synaptic strength signals are modified in successive states from stable values of the analog neuron signals. The analog signals are stored for as long as required in master/slaver sample and hold circuits as digitized signals which are periodically refreshed to maintain the stored voltage within a voltage window bracketing the original analog signal.
    Type: Grant
    Filed: July 25, 1989
    Date of Patent: August 7, 1990
    Assignee: West Virginia University
    Inventor: Paul B. Brown