Patents by Inventor Jon-Paul Maria

Jon-Paul Maria has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220363604
    Abstract: Embodiments relate to an improved hydroflux assisted densification process that introduces a transport phase (formed by the introduction of water during the process to suppress melting temperatures) for sintering, the transport phase being a non-aqueous solution. The process can facilitate sintering at low temperature ranges (at or below 300° C.) to yield densification>90% without the need for additional post-processing steps that otherwise would be needed if conventional processes were used. Control of the pressures and water content used during the process can enhance densification mechanisms related to dissolution-reprecipitation, allowing for a greater range of compositional spectra of materials that can be densified, a reduction of the amount of transport phase needed, a reduction of impurities and an improvement of properties in the densified material. Certain hydrated acetate powders can be used to generate a hydroxide mixture flux that is better for the low-temperature densification process.
    Type: Application
    Filed: October 1, 2020
    Publication date: November 17, 2022
    Inventors: Jon-Paul Maria, Sarah Lowum, Richard Floyd
  • Patent number: 10741649
    Abstract: A method of forming a metal oxide includes providing a reactive deposition atmosphere having an oxygen concentration of greater than about 20 percent in a chamber including a substrate therein. A pulsed DC signal is applied to a sputtering target comprising a metal, to sputter metal particles therefrom. A doping element may be supplied from a doping source (such as an alloyed metal target) in the reaction chamber. An electrically conductive metal oxide film comprising an oxide of the metal is deposited on the substrate responsive to a reaction between the metal particles and the reactive deposition atmosphere. Related devices are also discussed.
    Type: Grant
    Filed: May 24, 2018
    Date of Patent: August 11, 2020
    Assignee: NORTH CAROLINA STATE UNIVERSITY
    Inventors: Edward Sachet, Christopher Shelton, Jon-Paul Maria, Kyle Patrick Kelley, Evan Lars Runnerstrom
  • Patent number: 10468548
    Abstract: A detector that includes an all-oxide, Schottky-type heterojunction. The “metal” side of the heterojunction is formed, for example, from a dysprosium (“Dy”) doped cadmium oxide (“CdO”) (i.e., CdO:Dy). The semiconductor side of the heterojunction is formed, for example, from cadmium magnesium oxide (“CdMgO”). On the metal side of the junction, “hot” electrons are created through the excitation of surface plasmon polaritons by infrared radiation. The hot electrons are able to cross the Schottky-type barrier of the heterojunction into the conduction band of the semiconductor where they can be detected. The working wavelength of infrared radiation that is being detected can be adjusted or tuned by modifying the Dy content of Dy-doped CdO. The height of the Schottky-type barrier can also be adjusted by modifying the composition of CdMgO, which allows for the optimization of the Schottky-type barrier height for a given working wavelength.
    Type: Grant
    Filed: April 29, 2016
    Date of Patent: November 5, 2019
    Assignee: North Carolina State University
    Inventors: Edward Sachet, Jon-Paul Maria
  • Patent number: 10158040
    Abstract: Polaritonic hot electron infrared photodetector that detect infrared radiation. In one implementation, the polaritonic hot electron infrared photodetector includes a first contact layer, a second contact layer, a first dielectric layer, a second dielectric layer, and a conductor layer. The first dielectric layer is coupled between the first contact layer and the second contact layer. The second dielectric layer is coupled between the first dielectric layer and the second contact layer. The conductor layer is coupled between the first dielectric layer and the second dielectric layer. Infrared radiation incident upon the conductor layer is operable to create hot carriers that are injected from a conduction band of the conductor layer to a conduction band of the second contact layer.
    Type: Grant
    Filed: July 7, 2017
    Date of Patent: December 18, 2018
    Assignee: North Carolina State University
    Inventors: Edward Sachet, Jon-Paul Maria, Christopher Shelton
  • Publication number: 20180350922
    Abstract: A method of forming a metal oxide includes providing a reactive deposition atmosphere having an oxygen concentration of greater than about 20 percent in a chamber including a substrate therein. A pulsed DC signal is applied to a sputtering target comprising a metal, to sputter metal particles therefrom. A doping element may be supplied from a doping source (such as an alloyed metal target) in the reaction chamber. An electrically conductive metal oxide film comprising an oxide of the metal is deposited on the substrate responsive to a reaction between the metal particles and the reactive deposition atmosphere. Related devices are also discussed.
    Type: Application
    Filed: May 24, 2018
    Publication date: December 6, 2018
    Inventors: Edward Sachet, Christopher Shelton, Jon-Paul Maria, Kyle Patrick Kelley, Evan Lars Runnerstrom
  • Patent number: 9995858
    Abstract: IR emission devices comprising an array of polaritonic IR emitters arranged on a substrate, where the emitters are coupled to a heater configured to provide heat to one or more of the emitters. When the emitters are heated, they produce an infrared emission that can be polarized and whose spectral emission range, emission wavelength, and/or emission linewidth can be tuned by the polaritonic material used to form the elements of the array and/or by the size and/or shape of the emitters. The IR emission can be modulated by the induction of a strain into a ferroelectric, a change in the crystalline phase of a phase change material and/or by quickly applying and dissipating heat applied to the polaritonic nanostructure. The IR emission can be designed to be hidden in the thermal background so that it can be observed only under the appropriate filtering and/or demodulation conditions.
    Type: Grant
    Filed: December 8, 2017
    Date of Patent: June 12, 2018
    Assignee: The United States of America, as represented by the Secretary of the Navy
    Inventors: Joshua D. Caldwell, Virginia D. Wheeler, Marc Currie, Igor Vurgaftman, Jon-paul Maria
  • Patent number: 9971071
    Abstract: IR emission devices comprising an array of polaritonic IR emitters arranged on a substrate, where the emitters are coupled to a heater configured to provide heat to one or more of the emitters. When the emitters are heated, they produce an infrared emission that can be polarized and whose spectral emission range, emission wavelength, and/or emission linewidth can be tuned by the polaritonic material used to form the elements of the array and/or by the size and/or shape of the emitters. The IR emission can be modulated by the induction of a strain into a ferroelectric, a change in the crystalline phase of a phase change material and/or by quickly applying and dissipating heat applied to the polaritonic nanostructure. The IR emission can be designed to be hidden in the thermal background so that it can be observed only under the appropriate filtering and/or demodulation conditions.
    Type: Grant
    Filed: October 26, 2017
    Date of Patent: May 15, 2018
    Assignee: The United States of America, as represented by the Secretary of the Navy
    Inventors: Joshua D. Caldwell, Virginia D. Wheeler, Marc Currie, Igor Vurgaftman, Jon-paul Maria
  • Publication number: 20180100955
    Abstract: IR emission devices comprising an array of polaritonic IR emitters arranged on a substrate, where the emitters are coupled to a heater configured to provide heat to one or more of the emitters. When the emitters are heated, they produce an infrared emission that can be polarized and whose spectral emission range, emission wavelength, and/or emission linewidth can be tuned by the polaritonic material used to form the elements of the array and/or by the size and/or shape of the emitters. The IR emission can be modulated by the induction of a strain into a ferroelectric, a change in the crystalline phase of a phase change material and/or by quickly applying and dissipating heat applied to the polaritonic nanostructure. The IR emission can be designed to be hidden in the thermal background so that it can be observed only under the appropriate filtering and/or demodulation conditions.
    Type: Application
    Filed: December 8, 2017
    Publication date: April 12, 2018
    Applicant: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: Joshua D. Caldwell, Virginia D. Wheeler, Marc Currie, Igor Vurgaftman, Jon-Paul Maria
  • Publication number: 20180045861
    Abstract: IR emission devices comprising an array of polaritonic IR emitters arranged on a substrate, where the emitters are coupled to a heater configured to provide heat to one or more of the emitters. When the emitters are heated, they produce an infrared emission that can be polarized and whose spectral emission range, emission wavelength, and/or emission linewidth can be tuned by the polaritonic material used to form the elements of the array and/or by the size and/or shape of the emitters. The IR emission can be modulated by the induction of a strain into a ferroelectric, a change in the crystalline phase of a phase change material and/or by quickly applying and dissipating heat applied to the polaritonic nanostructure. The IR emission can be designed to be hidden in the thermal background so that it can be observed only under the appropriate filtering and/or demodulation conditions.
    Type: Application
    Filed: October 26, 2017
    Publication date: February 15, 2018
    Applicant: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: Joshua D. Caldwell, Virginia D. Wheeler, Marc Currie, Igor Vurgaftman, Jon-paul Maria
  • Patent number: 9870839
    Abstract: IR emission devices comprising an array of polaritonic IR emitters arranged on a substrate, where the emitters are coupled to a heater configured to provide heat to one or more of the emitters. When the emitters are heated, they produce an infrared emission that can be polarized and whose spectral emission range, emission wavelength, and/or emission linewidth can be tuned by the polaritonic material used to form the elements of the array and/or by the size and/or shape of the emitters. The IR emission can be modulated by the induction of a strain into a ferroelectric, a change in the crystalline phase of a phase change material and/or by quickly applying and dissipating heat applied to the polaritonic nanostructure. The IR emission can be designed to be hidden in the thermal background so that it can be observed only under the appropriate filtering and/or demodulation conditions.
    Type: Grant
    Filed: January 27, 2017
    Date of Patent: January 16, 2018
    Assignee: The United States of America, as represented by the Secretary of the Navy
    Inventors: Joshua D. Caldwell, Virginia D. Wheeler, Marc Currie, Igor Vurgaftman, Jon-paul Maria
  • Publication number: 20180013031
    Abstract: Polaritonic hot electron infrared photodetector that detect infrared radiation. In one implementation, the polaritonic hot electron infrared photodetector includes a first contact layer, a second contact layer, a first dielectric layer, a second dielectric layer, and a conductor layer. The first dielectric layer is coupled between the first contact layer and the second contact layer. The second dielectric layer is coupled between the first dielectric layer and the second contact layer. The conductor layer is coupled between the first dielectric layer and the second dielectric layer. Infrared radiation incident upon the conductor layer is operable to create hot carriers that are injected from a conduction band of the conductor layer to a conduction band of the second contact layer.
    Type: Application
    Filed: July 7, 2017
    Publication date: January 11, 2018
    Inventors: Edward Sachet, Jon-Paul Maria, Christopher Shelton
  • Publication number: 20170221596
    Abstract: IR emission devices comprising an array of polaritonic IR emitters arranged on a substrate, where the emitters are coupled to a heater configured to provide heat to one or more of the emitters. When the emitters are heated, they produce an infrared emission that can be polarized and whose spectral emission range, emission wavelength, and/or emission linewidth can be tuned by the polaritonic material used to form the elements of the array and/or by the size and/or shape of the emitters. The IR emission can be modulated by the induction of a strain into a ferroelectric, a change in the crystalline phase of a phase change material and/or by quickly applying and dissipating heat applied to the polaritonic nanostructure. The IR emission can be designed to be hidden in the thermal background so that it can be observed only under the appropriate filtering and/or demodulation conditions.
    Type: Application
    Filed: January 27, 2017
    Publication date: August 3, 2017
    Applicant: The Government of the United States of America, as represented by the Secretary of the Navy
    Inventors: Joshua D. Caldwell, Virginia D. Wheeler, Marc Currie, Igor Vurgaftman, Jon-paul Maria
  • Publication number: 20160322530
    Abstract: A detector that includes an all-oxide, Schottky-type heterojunction. The “metal” side of the heterojunction is formed, for example, from a dysprosium (“Dy”) doped cadmium oxide (“CdO”) (i.e., CdO:Dy). The semiconductor side of the heterojunction is formed, for example, from cadmium magnesium oxide (“CdMgO”). On the metal side of the junction, “hot” electrons are created through the excitation of surface plasmon polaritons by infrared radiation. The hot electrons are able to cross the Schottky-type barrier of the heterojunction into the conduction band of the semiconductor where they can be detected. The working wavelength of infrared radiation that is being detected can be adjusted or tuned by modifying the Dy content of Dy-doped CdO. The height of the Schottky-type barrier can also be adjusted by modifying the composition of CdMgO, which allows for the optimization of the Schottky-type barrier height for a given working wavelength.
    Type: Application
    Filed: April 29, 2016
    Publication date: November 3, 2016
    Inventors: Edward Sachet, Jon-Paul Maria
  • Publication number: 20160168436
    Abstract: An equimolar formulation of three or more ionic or partially ionic compounds stabilized by configurational entropy into a homogeneous crystal is provided.
    Type: Application
    Filed: December 14, 2015
    Publication date: June 16, 2016
    Inventors: Jon-Paul Maria, Elizabeth Dickey, Trent Borman
  • Patent number: 8710355
    Abstract: Photovoltaic cells, including silicon solar cells, and methods and compositions for making such photovoltaic cells are provided. A silicon substrate having p-type silicon base and an n-type silicon layer is provided with a silicon nitride layer, an exchange metal in contact with the silicon nitride layer, and a non-exchange metal in contact with the exchange metal. This assembly is fired to form a metal silicide contact on the silicon substrate, and a conductive metal electrode in contact with the metal silicide contact. The exchange metal is from nickel, cobalt, iron, manganese, molybdenum, and combinations thereof, and the non-exchange metal is from silver, copper, tin, bismuth, lead, antimony, arsenic, indium, zinc, germanium, gold, cadmium, beryllium, and combinations thereof.
    Type: Grant
    Filed: November 13, 2009
    Date of Patent: April 29, 2014
    Assignees: E I du Pont de Nemours and Company
    Inventors: William J. Borland, Howard David Glicksman, Jon-Paul Maria
  • Publication number: 20130000709
    Abstract: Photovoltaic cells including silicon solar cells are provided. A silicon substrate having an n-type silicon layer is provided with a silicon nitride layer, a reactive metal in contact with said silicon nitride layer, and a non-reactive metal in contact with the reactive metal. This assembly is fired to form a low Shottky barrier height contact comprised of metal nitride, and optionally metal silicide, on the silicon substrate, and a conductive metal electrode in contact with said low Shottky barrier height contact. The reactive metal may be titanium, zirconium, hafnium, vanadium, niobium, and tantalum, and combinations thereof, and the non-reactive metal may be silver, tin, bismuth, lead, antimony, arsenic, indium, zinc, germanium, nickel, phosphorus, gold, cadmium, berrylium, and combinations thereof.
    Type: Application
    Filed: September 14, 2012
    Publication date: January 3, 2013
    Applicant: E I DU PONT DE NEMOURS AND COMPANY NORTH CAROLINA STATE UNIVERSITY
    Inventors: WILLIAM J. BORLAND, Jon-Paul Maria
  • Patent number: 8294024
    Abstract: Photovoltaic cells, including silicon solar cells, and methods and compositions for making such photovoltaic cells are provided. A silicon substrate having an n-type silicon layer is provided with a silicon nitride layer, a reactive metal in contact with said silicon nitride layer, and a non-reactive metal in contact with the reactive metal. This assembly is fired to form a low Schottky barrier height contact comprised of metal nitride, and optionally metal silicide, on the silicon substrate, and a conductive metal electrode in contact with said low Schottky barrier height contact. The reactive metal may be titanium, zirconium, hafnium, vanadium, niobium, and tantalum, and combinations thereof, and the non-reactive metal may be silver, tin, bismuth, lead, antimony, arsenic, indium, zinc, germanium, nickel, phosphorus, gold, cadmium, berrylium, and combinations thereof.
    Type: Grant
    Filed: August 5, 2009
    Date of Patent: October 23, 2012
    Assignees: E I du Pont de Nemours and Company, North Carolina State University
    Inventors: William J. Borland, Jon-Paul Maria
  • Patent number: 8183108
    Abstract: A method of making dense dielectrics layers via chemical solution deposition by adding inorganic glass fluxed material to high dielectric constant compositions, depositing the resultant mixture onto a substrate and annealing the substrate at temperatures between the softening point of the inorganic glass flux and the melting point of the substrate. A method of making a capacitor comprising a dense dielectric layer.
    Type: Grant
    Filed: June 15, 2006
    Date of Patent: May 22, 2012
    Assignee: CDA Processing Limited Liability Company
    Inventors: William J. Borland, Seigi Suh, Jon-Paul Maria, Jon Fredrick Ihlefeld, Ian Burn
  • Publication number: 20100230149
    Abstract: A method of making dense dielectrics layers via chemical solution deposition by adding inorganic glass fluxed material to high dielectric constant compositions, depositing the resultant mixture onto a substrate and annealing the substrate at temperatures between the softening point of the inorganic glass flux and the melting point of the substrate. A method of making a capacitor comprising a dense dielectric layer.
    Type: Application
    Filed: June 15, 2006
    Publication date: September 16, 2010
    Inventors: William Borland, Seigi Suh, Jon-Paul Maria, Jon Fredrick Ihlefeld, Ian Burn
  • Publication number: 20100154875
    Abstract: Photovoltaic cells, including silicon solar cells, and methods and compositions for making such photovoltaic cells are provided. A silicon substrate having p-type silicon base and an n-type silicon layer is provided with a silicon nitride layer, an exchange metal in contact with the silicon nitride layer, and a non-exchange metal in contact with the exchange metal. This assembly is fired to form a metal silicide contact on the silicon substrate, and a conductive metal electrode in contact with the metal silicide contact. The exchange metal is from nickel, cobalt, iron, manganese, molybdenum, and combinations thereof, and the non-exchange metal is from silver, copper, tin, bismuth, lead, antimony, arsenic, indium, zinc, germanium, gold, cadmium, berrylium, and combinations thereof.
    Type: Application
    Filed: November 13, 2009
    Publication date: June 24, 2010
    Applicant: E. I. DU PONT DE NEMOURS AND COMPNAY & NORTH CAROLINA STATE UNIVERSITY
    Inventors: William J. Borland, Howard David Glicksman, Jon-Paul Maria